Tianfeng Liu, Linping Wang, Lei Tong, Zhangyan Ren, Bingjie Zhao, Haisheng Liu, Wen Lu, Haili Zhang, Shuai Zhang, Dongshu Du
{"title":"PDZD8 Dysregulation Mediates RVLM Neuronal Hyperexcitation Via Activation of Ca<sup>2+</sup>-Calpain-2 Signaling in Stress-Induced Hypertension.","authors":"Tianfeng Liu, Linping Wang, Lei Tong, Zhangyan Ren, Bingjie Zhao, Haisheng Liu, Wen Lu, Haili Zhang, Shuai Zhang, Dongshu Du","doi":"10.1007/s12035-025-05081-3","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) is crucial in the pathogenesis of stress-induced hypertension (SIH). PDZD8 connects endoplasmic reticulum (ER) to mitochondria, and is involved in SIH through regulating RVLM neuronal mitochondrial physiological function. However, the underlying mechanisms of the PDZD8 dysregulation-mediated mitochondrial dysfunction of RVLM neurons, affecting neuronal excitability during SIH, are not fully clarified. An SIH rat model was established by administering intermittent electric foot shocks combined with noise exposure for 2 h twice daily over a period of 15 days. The impacts of PDZD8 on regulating RVLM neuronal ER stress, mitochondrial function, apoptosis, and blood pressure (BP) of SIH rats, along with the related signaling pathway, were explored through using in-vivo and in-vitro techniques like RVLM microinjection, Western blot, flow cytometry, and immunofluorescence. We demonstrated that the ratio of c-Fos-positive tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) levels, BP, and heart rate (HR) increased in SIH rats. The activated neuronal ER stress, impaired mitochondrial function, and apoptosis were observed in the RVLM of SIH rats and PDZD8-deficient N2a cells. ER stress inhibitor (4-phenylbutyric acid, 4-PBA) administration effectively alleviated PDZD8 dysregulation-induced mitochondrial dysfunction and apoptosis. Mechanistically, PDZD8 negatively regulated Calpain-2 (CAPN2) expression through modulating cytoplasmic Ca<sup>2+</sup> levels. In vitro, CAPN2 inhibition rescued PDZD8 deficiency-induced ER stress, mitochondrial dysfunction, and apoptosis. In vivo, PDZD8 upregulation in the RVLM of SIH rats attenuated neuronal ER stress, mitochondrial dysfunction, and apoptosis, thus reducing RVLM neuronal excitability, RSNA, plasma NE, BP, and HR. These effects were blocked by CAPN2 overexpression. Overall, this study revealed that PDZD8 dysregulation induced RVLM neuronal ER stress, mitochondrial damage, and apoptosis by activating the Ca<sup>2+</sup>-CAPN2 axis, playing a crucial pathological role in SIH progression.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":"12539-12558"},"PeriodicalIF":4.3000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05081-3","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Neuronal hyperexcitation in the rostral ventrolateral medulla (RVLM) is crucial in the pathogenesis of stress-induced hypertension (SIH). PDZD8 connects endoplasmic reticulum (ER) to mitochondria, and is involved in SIH through regulating RVLM neuronal mitochondrial physiological function. However, the underlying mechanisms of the PDZD8 dysregulation-mediated mitochondrial dysfunction of RVLM neurons, affecting neuronal excitability during SIH, are not fully clarified. An SIH rat model was established by administering intermittent electric foot shocks combined with noise exposure for 2 h twice daily over a period of 15 days. The impacts of PDZD8 on regulating RVLM neuronal ER stress, mitochondrial function, apoptosis, and blood pressure (BP) of SIH rats, along with the related signaling pathway, were explored through using in-vivo and in-vitro techniques like RVLM microinjection, Western blot, flow cytometry, and immunofluorescence. We demonstrated that the ratio of c-Fos-positive tyrosine hydroxylase (TH) neurons, renal sympathetic nerve activity (RSNA), plasma norepinephrine (NE) levels, BP, and heart rate (HR) increased in SIH rats. The activated neuronal ER stress, impaired mitochondrial function, and apoptosis were observed in the RVLM of SIH rats and PDZD8-deficient N2a cells. ER stress inhibitor (4-phenylbutyric acid, 4-PBA) administration effectively alleviated PDZD8 dysregulation-induced mitochondrial dysfunction and apoptosis. Mechanistically, PDZD8 negatively regulated Calpain-2 (CAPN2) expression through modulating cytoplasmic Ca2+ levels. In vitro, CAPN2 inhibition rescued PDZD8 deficiency-induced ER stress, mitochondrial dysfunction, and apoptosis. In vivo, PDZD8 upregulation in the RVLM of SIH rats attenuated neuronal ER stress, mitochondrial dysfunction, and apoptosis, thus reducing RVLM neuronal excitability, RSNA, plasma NE, BP, and HR. These effects were blocked by CAPN2 overexpression. Overall, this study revealed that PDZD8 dysregulation induced RVLM neuronal ER stress, mitochondrial damage, and apoptosis by activating the Ca2+-CAPN2 axis, playing a crucial pathological role in SIH progression.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.