{"title":"LncRNA MALAT1 Facilitates HIV-1 Replication by Upregulation of CHCHD2 and Downregulation of IFN-I Expression.","authors":"Mei-Rong Wang, Cheng-Si Bai, Jian-Wei Dai, Lan Yang, Fang-Yi Quan, Jian-Chun Ma, Xing-Yuan Chen, Shao-Wei Zhu, Ying-Qi Xu, Zhou-Fu Xiang, Ya-le Jiang, Qi Cheng, Wei-Hao Zhang, Ke-Han Chen, Jian-Hua Wang, Yong Feng, Xiao-Ping Chen, Yong Xiong, Shu-Liang Chen, Wei Hou, Hai-Rong Xiong","doi":"10.1016/j.mcpro.2025.100997","DOIUrl":null,"url":null,"abstract":"<p><p>Long noncoding RNAs (lncRNAs) are effective regulators of both RNA and protein functions throughout cell biology, including viral replication. Emerging studies have shown that lncRNAs activate or inhibit the replication and latency of HIV-1 by regulating different cellular mechanisms. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic lncRNA required for paraspeckle integrity and has been proven to be linked to viral infection. However, the mechanisms by which it influences HIV-1 infection in macrophages remain unclear. In this study, we performed RNA-deep sequencing to compare the profiles of lncRNAs in macrophages with or without HIV-1 and found that MALAT1 was dramatically upregulated in HIV-1-infected macrophages. MALAT1 knockdown inhibited HIV-1 infection, whereas MALAT1 overexpression enhanced viral replication, indicating that MALAT1 promotes HIV-1 replication. We further performed proteomics analysis and found that coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was the most downregulated protein affected by RNAi-mediated knockdown of MALAT1. We next demonstrated that MALAT1 favored HIV-1 replication in a CHCHD2-dependent manner and functioned as a competing endogenous RNA to regulate CHCHD2 expression by sponging miR-145-5p, which could mutually bind the MALAT1 and 3'UTR of chchd2 mRNA. Furthermore, knockdown of endogenous MALAT1 or CHCHD2 with specific small interfering RNAs (siRNAs) promoted the expression of IRF7, and enhanced the promoter activities of interferons-α and -β, increasing their production as well as that of a critical interferon-stimulated gene (ISG), myxovirus resistance protein B (MxB). Moreover, MALAT1 or CHCHD2 knockdown promoted the expression of STAT2 to enhance the production of downstream MxB, which expanded the role of CHCHD2 as a negative regulator of the innate immune response. These findings improve our understanding of MALAT1/miR-145-5p/CHCHD2 pathway regulation of HIV-1 replication in macrophages, providing new insights into potential targeted therapeutic interventions.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100997"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12226137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2025.100997","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Long noncoding RNAs (lncRNAs) are effective regulators of both RNA and protein functions throughout cell biology, including viral replication. Emerging studies have shown that lncRNAs activate or inhibit the replication and latency of HIV-1 by regulating different cellular mechanisms. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is an oncogenic lncRNA required for paraspeckle integrity and has been proven to be linked to viral infection. However, the mechanisms by which it influences HIV-1 infection in macrophages remain unclear. In this study, we performed RNA-deep sequencing to compare the profiles of lncRNAs in macrophages with or without HIV-1 and found that MALAT1 was dramatically upregulated in HIV-1-infected macrophages. MALAT1 knockdown inhibited HIV-1 infection, whereas MALAT1 overexpression enhanced viral replication, indicating that MALAT1 promotes HIV-1 replication. We further performed proteomics analysis and found that coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was the most downregulated protein affected by RNAi-mediated knockdown of MALAT1. We next demonstrated that MALAT1 favored HIV-1 replication in a CHCHD2-dependent manner and functioned as a competing endogenous RNA to regulate CHCHD2 expression by sponging miR-145-5p, which could mutually bind the MALAT1 and 3'UTR of chchd2 mRNA. Furthermore, knockdown of endogenous MALAT1 or CHCHD2 with specific small interfering RNAs (siRNAs) promoted the expression of IRF7, and enhanced the promoter activities of interferons-α and -β, increasing their production as well as that of a critical interferon-stimulated gene (ISG), myxovirus resistance protein B (MxB). Moreover, MALAT1 or CHCHD2 knockdown promoted the expression of STAT2 to enhance the production of downstream MxB, which expanded the role of CHCHD2 as a negative regulator of the innate immune response. These findings improve our understanding of MALAT1/miR-145-5p/CHCHD2 pathway regulation of HIV-1 replication in macrophages, providing new insights into potential targeted therapeutic interventions.
期刊介绍:
The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action.
The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data.
Scope:
-Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights
-Novel experimental and computational technologies
-Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes
-Pathway and network analyses of signaling that focus on the roles of post-translational modifications
-Studies of proteome dynamics and quality controls, and their roles in disease
-Studies of evolutionary processes effecting proteome dynamics, quality and regulation
-Chemical proteomics, including mechanisms of drug action
-Proteomics of the immune system and antigen presentation/recognition
-Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease
-Clinical and translational studies of human diseases
-Metabolomics to understand functional connections between genes, proteins and phenotypes