{"title":"METTL9 mediated N1-Histidine methylation of SLC39A7 confers ferroptosis resistance and inhibits adipogenic differentiation in mesenchymal stem cells.","authors":"Jiahao Jin, Quanfeng Li, Yunhui Zhang, Pengfei Ji, Xinlang Wang, Yibin Zhang, Zihao Yuan, Jianan Jiang, Guangqi Tian, Mingxi Cai, Pei Feng, Yanfeng Wu, Peng Wang, Wenjie Liu","doi":"10.1186/s10020-025-01271-w","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoporosis is a prevalent systemic metabolic disease, and an imbalance in the adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in its pathogenesis. Thus, elucidating the mechanisms that regulate MSC lineage allocation is urgently needed. METTL9 was recently characterized as a novel N1-histidine methyltransferase that performs a wide range of functions. however, the role of METTL9 in the imbalance of MSC differentiation in osteoporosis remains unclear. In this study, we found that METTL9 expression was downregulated in osteoporosis, and further adipogenic functional experiments revealed that METTL9 negatively regulated the adipogenic differentiation of MSCs both in vitro and in vivo. Mechanistically, METTL9 mediated methylation of SLC39A7 at the His45 and His49 residues suppressed ferroptosis through the endoplasmic reticulum (ER) stress regulatory protein kinase R-like endoplasmic reticulum kinase (PERK)/ATF4 signaling pathway and the downstream protein SLC7A11. Moreover, SLC7A11 transported cystine for intracellular glutathione synthesis, eliminating intracellular reactive oxygen species (ROS) and inhibiting MSC adipogenic differentiation. Additionally, METTL9 overexpression significantly alleviated bone loss in ovariectomy (OVX) model mice. In summary, our results suggest that the METTL9/SLC39A7 axis may be a promising diagnostic and therapeutic target for osteoporosis.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":"31 1","pages":"206"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12105315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-025-01271-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoporosis is a prevalent systemic metabolic disease, and an imbalance in the adipogenic and osteogenic differentiation of mesenchymal stem cells (MSCs) plays a crucial role in its pathogenesis. Thus, elucidating the mechanisms that regulate MSC lineage allocation is urgently needed. METTL9 was recently characterized as a novel N1-histidine methyltransferase that performs a wide range of functions. however, the role of METTL9 in the imbalance of MSC differentiation in osteoporosis remains unclear. In this study, we found that METTL9 expression was downregulated in osteoporosis, and further adipogenic functional experiments revealed that METTL9 negatively regulated the adipogenic differentiation of MSCs both in vitro and in vivo. Mechanistically, METTL9 mediated methylation of SLC39A7 at the His45 and His49 residues suppressed ferroptosis through the endoplasmic reticulum (ER) stress regulatory protein kinase R-like endoplasmic reticulum kinase (PERK)/ATF4 signaling pathway and the downstream protein SLC7A11. Moreover, SLC7A11 transported cystine for intracellular glutathione synthesis, eliminating intracellular reactive oxygen species (ROS) and inhibiting MSC adipogenic differentiation. Additionally, METTL9 overexpression significantly alleviated bone loss in ovariectomy (OVX) model mice. In summary, our results suggest that the METTL9/SLC39A7 axis may be a promising diagnostic and therapeutic target for osteoporosis.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.