{"title":"NLRP3 activation induces BBB disruption and neutrophil infiltration via CXCR2 signaling in the mouse brain.","authors":"Jaeho Lee, Wooyoung Cho, Je-Wook Yu, Young-Min Hyun","doi":"10.1186/s12974-025-03468-6","DOIUrl":null,"url":null,"abstract":"<p><p>NLRP3 is an intracellular sensor molecule that affects neutrophil functionality and infiltration in brain disorders such as experimental autoimmune encephalomyelitis (EAE). However, the detailed molecular mechanisms underlying the role of NLRP3 in these processes remain unknown. We found that NLRP3 is crucial for neutrophil infiltration, whereas dispensable for neutrophil priming. Notably, NLRP3 activation in neutrophils induced blood-brain barrier (BBB) disruption and neutrophil infiltration into the brain via CXCL1/2 secretion and subsequent activation of the CXCL1/2-CXCR2 signaling axis. Moreover, CXCL1 and CXCL2 in the inflamed brain directly reduced Claudin-5 expression, which regulates BBB permeability in brain endothelial cells. Furthermore, neutrophil-specific NLRP3 activation aggravated EAE pathogenesis by promoting CXCR2-mediated infiltration of both neutrophils and CD4<sup>+</sup> T cells into the central nervous system at disease onset. Thus, the CXCL1/2-CXCR2 axis plays a role in EAE progression. Therefore, this chemokine axis could be a potential therapeutic target for attenuating neuroinflammatory diseases through modulating of neutrophil and CD4<sup>+</sup> T cell infiltration and BBB disruption.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"139"},"PeriodicalIF":9.3000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12102932/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03468-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
NLRP3 is an intracellular sensor molecule that affects neutrophil functionality and infiltration in brain disorders such as experimental autoimmune encephalomyelitis (EAE). However, the detailed molecular mechanisms underlying the role of NLRP3 in these processes remain unknown. We found that NLRP3 is crucial for neutrophil infiltration, whereas dispensable for neutrophil priming. Notably, NLRP3 activation in neutrophils induced blood-brain barrier (BBB) disruption and neutrophil infiltration into the brain via CXCL1/2 secretion and subsequent activation of the CXCL1/2-CXCR2 signaling axis. Moreover, CXCL1 and CXCL2 in the inflamed brain directly reduced Claudin-5 expression, which regulates BBB permeability in brain endothelial cells. Furthermore, neutrophil-specific NLRP3 activation aggravated EAE pathogenesis by promoting CXCR2-mediated infiltration of both neutrophils and CD4+ T cells into the central nervous system at disease onset. Thus, the CXCL1/2-CXCR2 axis plays a role in EAE progression. Therefore, this chemokine axis could be a potential therapeutic target for attenuating neuroinflammatory diseases through modulating of neutrophil and CD4+ T cell infiltration and BBB disruption.
期刊介绍:
The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes.
Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems.
The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.