Jiawei Wang, Teng Wang, Honghao Wang, Hua Jin, Hu Liu, Hong Yan
{"title":"Distribution and abundance of iron-sulfur cycle bacteria in acid mine drainage-impacted sediments of the Shandi river basin.","authors":"Jiawei Wang, Teng Wang, Honghao Wang, Hua Jin, Hu Liu, Hong Yan","doi":"10.1007/s10653-025-02537-2","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-sulfur cycle bacteria are considered the principal participants in the regulation of iron and sulfur cycles, ubiquitously found in diverse natural ecosystems. This study concentrated on the spatial distribution patterns of iron-sulfur bacteria in the acid mine drainage (AMD) sediments, compared with AMD-impacted river sediments, and evaluated the potential influences of iron-sulfur bacteria on the metals in the Shandi River basin. The results showed that the water and sediments near the mine from the Shandi River basin had been seriously polluted by heavy metals and sulfate. Specifically, the Nemerow index (P) exceeded 5, and the comprehensive potential ecological risk factor (RI) surpassed 600. The sediment samples collected exhibited a profusion of iron-sulfur cycle bacteria, with the abundance of these organisms being higher within river sediments compared to AMD sediments, particularly for iron-sulfur reducing bacteria. The results of correlation and redundancy analysis showed that most metals had an impact on the abundance of iron-sulfur cycle microorganisms in different degrees. Meanwhile, SEM-EDS analysis revealed the presence of sulfate minerals in diverse forms in sediments, which might be biogenic. All of findings indicated that iron-sulfur cycle bacteria might regulate the forms of metal and sulphur, fixed most metals and sulfate, and further influencing the synthesis and phase transition of sulfate minerals in the sediments. This study confirmed the ecological values of iron-sulfur bacteria, which will be help for bioremediation of AMD contaminants in Shandi River basin.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 6","pages":"231"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02537-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Iron-sulfur cycle bacteria are considered the principal participants in the regulation of iron and sulfur cycles, ubiquitously found in diverse natural ecosystems. This study concentrated on the spatial distribution patterns of iron-sulfur bacteria in the acid mine drainage (AMD) sediments, compared with AMD-impacted river sediments, and evaluated the potential influences of iron-sulfur bacteria on the metals in the Shandi River basin. The results showed that the water and sediments near the mine from the Shandi River basin had been seriously polluted by heavy metals and sulfate. Specifically, the Nemerow index (P) exceeded 5, and the comprehensive potential ecological risk factor (RI) surpassed 600. The sediment samples collected exhibited a profusion of iron-sulfur cycle bacteria, with the abundance of these organisms being higher within river sediments compared to AMD sediments, particularly for iron-sulfur reducing bacteria. The results of correlation and redundancy analysis showed that most metals had an impact on the abundance of iron-sulfur cycle microorganisms in different degrees. Meanwhile, SEM-EDS analysis revealed the presence of sulfate minerals in diverse forms in sediments, which might be biogenic. All of findings indicated that iron-sulfur cycle bacteria might regulate the forms of metal and sulphur, fixed most metals and sulfate, and further influencing the synthesis and phase transition of sulfate minerals in the sediments. This study confirmed the ecological values of iron-sulfur bacteria, which will be help for bioremediation of AMD contaminants in Shandi River basin.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.