Xue Shi, Ziwei Tian, Yuan Wang, Xuqiu Cheng, Yuantao Zhang, Xianwei Guo, Yan Zhang, Bing Hu, Changliu Liang, Jun Wang, Fangbiao Tao, Linsheng Yang
{"title":"Associations of non‑essential metals and their mixture with non-alcoholic fatty liver disease in Chinese older adults.","authors":"Xue Shi, Ziwei Tian, Yuan Wang, Xuqiu Cheng, Yuantao Zhang, Xianwei Guo, Yan Zhang, Bing Hu, Changliu Liang, Jun Wang, Fangbiao Tao, Linsheng Yang","doi":"10.1007/s10653-025-02539-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Research investigating the impact of the non-essential metal (NEM) mixture on non-alcoholic fatty liver disease (NAFLD) among the elderly is presently insufficient. This study investigated the relationships between individual NEMs, their mixtures, and NAFLD in elderly individuals residing in Chinese communities.</p><p><strong>Methods: </strong>The analysis included 2741 participants drawn from the baseline survey of a longitudinal study. Urinary concentrations of aluminum (Al), gallium (Ga), arsenic (As), cesium (Cs), barium (Ba), thallium (Tl), uranium (U), and cadmium (Cd) were quantified using inductively coupled plasma mass spectrometry (ICP-MS). NAFLD diagnosis was determined using abdominal ultrasound imaging. Logistic regression and restricted cubic spline (RCS) models were utilized to evaluate the relationships between individual NEMs and NAFLD. Additionally, Bayesian kernel machine regression (BKMR) and quantile-based computation regression (QGC) models were employed to assess the impact of the NEM mixture on NAFLD.</p><p><strong>Results: </strong>After adjusting for covariates, Tl was significantly associated with an increased likelihood of NAFLD (OR 1.26, 95% CI 1.10-1.44). Both RCS and BKMR models confirmed a linear relationship between urine Tl and the risk of NAFLD. Additionally, both BKMR and QGC models highlighted a significant connection between the NEMs mixture and NAFLD, identifying Tl as the primary driver. Significant interactions were observed between Tl and Ba, as well as between Tl and hypertension (P<sub>interaction</sub> = 0.055) and Tl and central obesity (P<sub>interaction</sub> = 0.008), collectively demonstrating synergistic impacts on NAFLD risk.</p><p><strong>Conclusions: </strong>The NEM mixture is associated with a higher risk of NAFLD in Chinese old adults, with Tl as the primary contributor. Additional investigation is required to validate these findings and shed light on underlying biological pathways through which co-exposure to NEMs contribute to NAFLD.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 6","pages":"228"},"PeriodicalIF":3.2000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02539-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Research investigating the impact of the non-essential metal (NEM) mixture on non-alcoholic fatty liver disease (NAFLD) among the elderly is presently insufficient. This study investigated the relationships between individual NEMs, their mixtures, and NAFLD in elderly individuals residing in Chinese communities.
Methods: The analysis included 2741 participants drawn from the baseline survey of a longitudinal study. Urinary concentrations of aluminum (Al), gallium (Ga), arsenic (As), cesium (Cs), barium (Ba), thallium (Tl), uranium (U), and cadmium (Cd) were quantified using inductively coupled plasma mass spectrometry (ICP-MS). NAFLD diagnosis was determined using abdominal ultrasound imaging. Logistic regression and restricted cubic spline (RCS) models were utilized to evaluate the relationships between individual NEMs and NAFLD. Additionally, Bayesian kernel machine regression (BKMR) and quantile-based computation regression (QGC) models were employed to assess the impact of the NEM mixture on NAFLD.
Results: After adjusting for covariates, Tl was significantly associated with an increased likelihood of NAFLD (OR 1.26, 95% CI 1.10-1.44). Both RCS and BKMR models confirmed a linear relationship between urine Tl and the risk of NAFLD. Additionally, both BKMR and QGC models highlighted a significant connection between the NEMs mixture and NAFLD, identifying Tl as the primary driver. Significant interactions were observed between Tl and Ba, as well as between Tl and hypertension (Pinteraction = 0.055) and Tl and central obesity (Pinteraction = 0.008), collectively demonstrating synergistic impacts on NAFLD risk.
Conclusions: The NEM mixture is associated with a higher risk of NAFLD in Chinese old adults, with Tl as the primary contributor. Additional investigation is required to validate these findings and shed light on underlying biological pathways through which co-exposure to NEMs contribute to NAFLD.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.