Mutual information stacking method for prediction of the growth traits in pigs.

IF 6.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Ruilin Su, Binyang Huang, Junyan Tan, Zhencai Shen, Ping Zhong, Jianfeng Liu
{"title":"Mutual information stacking method for prediction of the growth traits in pigs.","authors":"Ruilin Su, Binyang Huang, Junyan Tan, Zhencai Shen, Ping Zhong, Jianfeng Liu","doi":"10.1093/bib/bbaf231","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic prediction is a crucial technique for phenotype estimation, with the genomic best linear unbiased prediction (GBLUP) being the most widely adopted method. Yet, GBLUP falls short in capturing the intricate nonlinear relationships between genomic data and phenotypes. Given its ability to more effectively capture nonlinear genetic effects, machine learning (ML) has become increasingly appealing in genomic prediction. However, almost GBLUP and ML methods utilize all single nucleotide polymorphisms (SNPs) data for prediction, ignoring the fact that only a subset of SNPs are effective. This not only consumes computation time but also has poor prediction accuracy. So, this paper proposed a mutual information stacking method (MISM). Firstly, mutual information was introduced to select the SNPs with effect and remove the redundant SNPs. Then, we constructed a stacking model that can capture both linear and nonlinear relationships between SNPs and phenotypes to improve the prediction accuracy. To assess the effectiveness of MISM, we compared its performance on pig growth traits with GBLUP and other ML methods. The statistical analysis results indicated that MISM outperformed other ML models and GBLUP.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12104626/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf231","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic prediction is a crucial technique for phenotype estimation, with the genomic best linear unbiased prediction (GBLUP) being the most widely adopted method. Yet, GBLUP falls short in capturing the intricate nonlinear relationships between genomic data and phenotypes. Given its ability to more effectively capture nonlinear genetic effects, machine learning (ML) has become increasingly appealing in genomic prediction. However, almost GBLUP and ML methods utilize all single nucleotide polymorphisms (SNPs) data for prediction, ignoring the fact that only a subset of SNPs are effective. This not only consumes computation time but also has poor prediction accuracy. So, this paper proposed a mutual information stacking method (MISM). Firstly, mutual information was introduced to select the SNPs with effect and remove the redundant SNPs. Then, we constructed a stacking model that can capture both linear and nonlinear relationships between SNPs and phenotypes to improve the prediction accuracy. To assess the effectiveness of MISM, we compared its performance on pig growth traits with GBLUP and other ML methods. The statistical analysis results indicated that MISM outperformed other ML models and GBLUP.

猪生长性状预测的互信息叠加法。
基因组预测是表型估计的关键技术,基因组最佳线性无偏预测(GBLUP)是目前应用最广泛的方法。然而,GBLUP在捕捉基因组数据和表型之间复杂的非线性关系方面存在不足。由于能够更有效地捕获非线性遗传效应,机器学习(ML)在基因组预测中变得越来越有吸引力。然而,几乎GBLUP和ML方法利用所有单核苷酸多态性(snp)数据进行预测,忽略了只有一小部分snp有效的事实。这不仅消耗计算时间,而且预测精度较差。为此,本文提出了一种互信息叠加方法(MISM)。首先,引入互信息,选择有效的snp,去除冗余的snp;然后,我们构建了一个堆叠模型,可以捕捉snp与表型之间的线性和非线性关系,以提高预测精度。为了评估MISM的有效性,我们将其与GBLUP和其他ML方法对猪生长性状的影响进行了比较。统计分析结果表明,MISM优于其他ML模型和GBLUP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Briefings in bioinformatics
Briefings in bioinformatics 生物-生化研究方法
CiteScore
13.20
自引率
13.70%
发文量
549
审稿时长
6 months
期刊介绍: Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data. The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信