{"title":"Evaluating Signal Peptide Efficiency for Extracellular Protein Secretion for mRNA Vaccine Design.","authors":"Shinya Sato, Naoki Minagawa, Yuro Hirata, Masanori Sasaki, Takumi Okamoto, Mariko Kamiya, Koji Matsuhisa, Shigeru Kawakami, Masayuki Kaneko","doi":"10.1248/bpb.b25-00155","DOIUrl":null,"url":null,"abstract":"<p><p>mRNA vaccines have emerged as promising platforms for the prevention of infectious diseases and cancer treatment. The antigenic protein has a signal peptide added to the N-terminus for extracellular secretion. However, it remains unclear whether the optimization of signal peptides has been sufficiently compared and examined for antigen protein secretion and immunogenicity. This study investigated the effects of various signal peptides on the extracellular secretion of a model protein, NanoLuc luciferase (Nluc), in different cell lines. We compared the secretion efficiency of Nluc fused to artificial (#38 and #34) and natural signal peptides (cystatin S, lactotransferrin, and tissue plasminogen activator) in human embryonic kidney 293, C2C12, and HepG2 cells. Luciferase assays and Western blot analysis revealed that the cystatin S signal peptide consistently induced the highest secretion of Nluc among all cell types tested. Notably, the cystatin S signal peptide outperformed previously reported tissue plasminogen activator signal peptides in terms of secretion efficiency. Furthermore, we observed no correlation between Nluc secretion and mRNA expression levels for each signal peptide, suggesting that enhanced secretion was not attributable to increased transcription. Our findings highlight the potential of the cystatin S signal peptide in enhancing the extracellular secretion of antigenic proteins in mRNA vaccines by improving the efficiency of protein translation.</p>","PeriodicalId":8955,"journal":{"name":"Biological & pharmaceutical bulletin","volume":"48 5","pages":"706-712"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological & pharmaceutical bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1248/bpb.b25-00155","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
mRNA vaccines have emerged as promising platforms for the prevention of infectious diseases and cancer treatment. The antigenic protein has a signal peptide added to the N-terminus for extracellular secretion. However, it remains unclear whether the optimization of signal peptides has been sufficiently compared and examined for antigen protein secretion and immunogenicity. This study investigated the effects of various signal peptides on the extracellular secretion of a model protein, NanoLuc luciferase (Nluc), in different cell lines. We compared the secretion efficiency of Nluc fused to artificial (#38 and #34) and natural signal peptides (cystatin S, lactotransferrin, and tissue plasminogen activator) in human embryonic kidney 293, C2C12, and HepG2 cells. Luciferase assays and Western blot analysis revealed that the cystatin S signal peptide consistently induced the highest secretion of Nluc among all cell types tested. Notably, the cystatin S signal peptide outperformed previously reported tissue plasminogen activator signal peptides in terms of secretion efficiency. Furthermore, we observed no correlation between Nluc secretion and mRNA expression levels for each signal peptide, suggesting that enhanced secretion was not attributable to increased transcription. Our findings highlight the potential of the cystatin S signal peptide in enhancing the extracellular secretion of antigenic proteins in mRNA vaccines by improving the efficiency of protein translation.
期刊介绍:
Biological and Pharmaceutical Bulletin (Biol. Pharm. Bull.) began publication in 1978 as the Journal of Pharmacobio-Dynamics. It covers various biological topics in the pharmaceutical and health sciences. A fourth Society journal, the Journal of Health Science, was merged with Biol. Pharm. Bull. in 2012.
The main aim of the Society’s journals is to advance the pharmaceutical sciences with research reports, information exchange, and high-quality discussion. The average review time for articles submitted to the journals is around one month for first decision. The complete texts of all of the Society’s journals can be freely accessed through J-STAGE. The Society’s editorial committee hopes that the content of its journals will be useful to your research, and also invites you to submit your own work to the journals.