{"title":"Bumble bee movement ecology: foraging and dispersal across castes and life stages.","authors":"John M Mola, Neal M Williams","doi":"10.1093/aesa/saaf010","DOIUrl":null,"url":null,"abstract":"<p><p>Movement is a dynamic process that changes with ontogeny, physiological state, and ecological context. The results of organismal movement impact multiple dimensions of fitness, population dynamics, and functional interactions. As such, the study of movement is critical for understanding and conserving species. Bumble bees (Apidae: <i>Bombus</i> spp.) offer a powerful system to study multiple complexities of movement within a functionally important clade. Their life history includes distinct social and solitary phases, substantial intraspecific variation in body size, and multiple modes of movement behavior. These traits allow investigations of diverse concepts at multiple scales and during contrasting behavioral and motivational states-from individuals, to colonies, to populations, and among species. Despite extensive study as model organisms of fine-scale movements and optimal foraging theory, understanding of landscape-scale movements is more limited. This knowledge gap is especially troubling given global pollinator declines because such dispersive movements fundamentally affect how populations respond to landscape transformation, climate change, and restoration efforts. To build toward a refined understanding of the bumble bee movement, inform research, and assist conservation programs, we review foraging and dispersal movement across life stages and castes. Using an ontogenetic approach, we compare the movement motivation and capacity of individuals throughout colony development. Despite the growth in recent literature, much remains to be learned about the bumble bee movement, especially dispersive life stages. Focused effort on how movement varies with individual state such as nutrition and age, and comparative studies of species would all fill knowledge gaps with high potential to improve bee conservation and research.</p>","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"118 3","pages":"175-188"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095912/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saaf010","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Movement is a dynamic process that changes with ontogeny, physiological state, and ecological context. The results of organismal movement impact multiple dimensions of fitness, population dynamics, and functional interactions. As such, the study of movement is critical for understanding and conserving species. Bumble bees (Apidae: Bombus spp.) offer a powerful system to study multiple complexities of movement within a functionally important clade. Their life history includes distinct social and solitary phases, substantial intraspecific variation in body size, and multiple modes of movement behavior. These traits allow investigations of diverse concepts at multiple scales and during contrasting behavioral and motivational states-from individuals, to colonies, to populations, and among species. Despite extensive study as model organisms of fine-scale movements and optimal foraging theory, understanding of landscape-scale movements is more limited. This knowledge gap is especially troubling given global pollinator declines because such dispersive movements fundamentally affect how populations respond to landscape transformation, climate change, and restoration efforts. To build toward a refined understanding of the bumble bee movement, inform research, and assist conservation programs, we review foraging and dispersal movement across life stages and castes. Using an ontogenetic approach, we compare the movement motivation and capacity of individuals throughout colony development. Despite the growth in recent literature, much remains to be learned about the bumble bee movement, especially dispersive life stages. Focused effort on how movement varies with individual state such as nutrition and age, and comparative studies of species would all fill knowledge gaps with high potential to improve bee conservation and research.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.