Ap-Vas1 distribution unveils new insights into germline development in the parthenogenetic and viviparous pea aphid: from germ-plasm assembly to germ-cell clustering.
{"title":"Ap-Vas1 distribution unveils new insights into germline development in the parthenogenetic and viviparous pea aphid: from germ-plasm assembly to germ-cell clustering.","authors":"Gee-Way Lin, Chun-Che Chang","doi":"10.1093/aesa/saaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Targeting the distribution of germ-cell markers is a widely used strategy for investigating germline development in animals. Among these markers, the <i>vasa</i> (<i>vas</i>) orthologues, which encode ATP-dependent RNA helicases, are highly conserved. Previous studies have examined asexual (parthenogenetic) and viviparous embryos of the pea aphid <i>Acyrthosiphon pisum</i> using a cross-reacting Vas antibody. This study utilized a specific antibody against Ap-Vas1, a Vas orthologue in the pea aphid, to gain new insights into germline development. The Ap-Vas1-specific antibody facilitates earlier detection of germ-plasm assembly at the oocyte posterior, challenging the previous assumption that germ-plasm assembly begins only at the onset of embryogenesis. Treatment of oocytes and early embryos with cytoskeleton inhibitors suggests that germ-plasm assembly primarily depends on actin, in contrast to the fly <i>Drosophila melanogaster</i>, where both actin and microtubules are essential. Since pea aphids lack an orthologue of <i>osk</i>, which encodes the protein Osk responsible for anchoring Vas to the germ plasm in <i>Drosophila</i>, this suggests that pea aphids employ distinct mechanisms for <i>osk</i>- and microtubule-independent formation of the germ plasm. Moreover, the clustering of germ cells into germarium-like structures in the extraembryonic region before entering the embryos suggests a gonad formation process different from that in <i>Drosophila</i>, where germ cells begin to cluster into germaria after settling within the embryonic gonads. Therefore, the analysis of the Ap-Vas1 distribution provides a deeper understanding of germline development in asexual pea aphids, uncovering novel aspects of parthenogenetic and viviparous reproduction in insects.</p>","PeriodicalId":8076,"journal":{"name":"Annals of The Entomological Society of America","volume":"118 3","pages":"229-236"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095909/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of The Entomological Society of America","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/aesa/saaf009","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Targeting the distribution of germ-cell markers is a widely used strategy for investigating germline development in animals. Among these markers, the vasa (vas) orthologues, which encode ATP-dependent RNA helicases, are highly conserved. Previous studies have examined asexual (parthenogenetic) and viviparous embryos of the pea aphid Acyrthosiphon pisum using a cross-reacting Vas antibody. This study utilized a specific antibody against Ap-Vas1, a Vas orthologue in the pea aphid, to gain new insights into germline development. The Ap-Vas1-specific antibody facilitates earlier detection of germ-plasm assembly at the oocyte posterior, challenging the previous assumption that germ-plasm assembly begins only at the onset of embryogenesis. Treatment of oocytes and early embryos with cytoskeleton inhibitors suggests that germ-plasm assembly primarily depends on actin, in contrast to the fly Drosophila melanogaster, where both actin and microtubules are essential. Since pea aphids lack an orthologue of osk, which encodes the protein Osk responsible for anchoring Vas to the germ plasm in Drosophila, this suggests that pea aphids employ distinct mechanisms for osk- and microtubule-independent formation of the germ plasm. Moreover, the clustering of germ cells into germarium-like structures in the extraembryonic region before entering the embryos suggests a gonad formation process different from that in Drosophila, where germ cells begin to cluster into germaria after settling within the embryonic gonads. Therefore, the analysis of the Ap-Vas1 distribution provides a deeper understanding of germline development in asexual pea aphids, uncovering novel aspects of parthenogenetic and viviparous reproduction in insects.
期刊介绍:
The Annals of the Entomological Society of America exists to stimulate interdisciplinary dialogue across the entomological disciplines and to advance cooperative interaction among diverse groups of entomologists. It seeks to attract and publish cutting-edge research, reviews, collections of articles on a common topic of broad interest, and discussion of topics with national or international importance. We especially welcome articles covering developing areas of research, controversial issues or debate, and topics of importance to society. Manuscripts that are primarily reports of new species, methodology, pest management, or the biology of single species generally will be referred to other journals of the ESA. The most important criteria for acceptance are quality of work and breadth of interest to the readership.