Stephen J Dansereau, Alexander Shekhtman, Francesco Epifano, Salvatore Genovese, Serena Fiorito, Thomas J Begley, Jia Sheng
{"title":"A Geranylated Natural Product Simamycin Disrupts the Allosteric Catalysis of tRNA-2-selenouridine Synthase SelU.","authors":"Stephen J Dansereau, Alexander Shekhtman, Francesco Epifano, Salvatore Genovese, Serena Fiorito, Thomas J Begley, Jia Sheng","doi":"10.1021/acs.biochem.5c00053","DOIUrl":null,"url":null,"abstract":"<p><p>tRNA-2-selenouridine synthase (SelU) is a tRNA-modifying enzyme that is instrumental to bacterial translation by exploiting certain chalcogens. Specifically, this enzyme catalyzes the geranylation of 2-thiouridine at the wobble position of three bacterial tRNAs to enhance the recognition of codons ending in guanosine over adenosine using geranyl pyrophosphate as the cofactor. In addition, SelU is also the working enzyme for a selenation process at the same tRNA position in the presence of selenophosphate. How this enzyme conducts two mechanistically different reactions is a fundamentally interesting question. In order to gain more details about the substrate recognition of SelU, in this work, we identified a small natural compound simamycin (5'-<i>O-</i>geranyluridine) with strong interactions with this enzyme. Further, through biophysical affinity assays and NMR structural studies, we postulated an allosteric mechanism of SelU catalysis involving cooperativity among each domain and a conformational rearrangement around the active site of its N-terminal domain. This conclusion is supported by the bimolecular quenching constants, number of binding sites, and thermodynamic parameters calculated for this compound complexed with the N-terminal domain of SelU.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.5c00053","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
tRNA-2-selenouridine synthase (SelU) is a tRNA-modifying enzyme that is instrumental to bacterial translation by exploiting certain chalcogens. Specifically, this enzyme catalyzes the geranylation of 2-thiouridine at the wobble position of three bacterial tRNAs to enhance the recognition of codons ending in guanosine over adenosine using geranyl pyrophosphate as the cofactor. In addition, SelU is also the working enzyme for a selenation process at the same tRNA position in the presence of selenophosphate. How this enzyme conducts two mechanistically different reactions is a fundamentally interesting question. In order to gain more details about the substrate recognition of SelU, in this work, we identified a small natural compound simamycin (5'-O-geranyluridine) with strong interactions with this enzyme. Further, through biophysical affinity assays and NMR structural studies, we postulated an allosteric mechanism of SelU catalysis involving cooperativity among each domain and a conformational rearrangement around the active site of its N-terminal domain. This conclusion is supported by the bimolecular quenching constants, number of binding sites, and thermodynamic parameters calculated for this compound complexed with the N-terminal domain of SelU.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.