{"title":"Sp2 Transcription Factor Alleviates Chondrocyte Loss in Osteoarthritis by Repressing the DVL1-Dependent Wnt/β-Catenin Signaling Pathway","authors":"Yuan Lin, Xinpeng Zheng, Xiaolei Chen, Yue Wang","doi":"10.1002/jgm.70021","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Osteoarthritis (OA) ranks as the most prevalent condition affecting the musculoskeletal system, where chondrocyte loss or dysfunction plays a crucial pathogenic role. This study is aimed at investigating key molecular cascades implicated in chondrocyte loss and cartilage injury in OA.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>A mouse model of OA was generated by destabilization of the medial meniscus. Histological staining was performed to evaluate the pathological changes in the knee joint tissue, the cartilage morphology, and the osteoblast population. A high-throughput sequencing analysis was performed to analyze aberrantly expressed genes in OA cartilage. Gain- or loss-of-function assays of dishevelled segment polarity protein 1 (DVL1) and Sp2 transcription factor (SP2) were carried out to analyze their effects on cartilage injury in mice and chondrocyte apoptosis in vitro. The interaction between SP2 and DVL1 was verified by chromatin immunoprecipitation and luciferase assays.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>DVL1 was expressed at aberrantly high levels in the cartilage of OA mice. Its knockdown suppressed protein levels and transcriptional activity of β-catenin, thereby reducing cartilage damage and loss in mice. In vitro, chondrocyte apoptosis was inhibited upon DVL1 silencing. SP2, poorly expressed in OA cartilage, was found to repress DVL1 transcription by binding to its promoter. Overexpression of SP2 similarly alleviated cartilage injury and chondrocyte loss; however, these effects were negated by the additional DVL1 overexpression.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>This study demonstrates that SP2 represses DVL1 transcription and inactivates the Wnt/β-catenin signaling, thus alleviating chondrocyte loss and cartilage injury in OA mice.</p>\n </section>\n </div>","PeriodicalId":56122,"journal":{"name":"Journal of Gene Medicine","volume":"27 5","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Gene Medicine","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgm.70021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Osteoarthritis (OA) ranks as the most prevalent condition affecting the musculoskeletal system, where chondrocyte loss or dysfunction plays a crucial pathogenic role. This study is aimed at investigating key molecular cascades implicated in chondrocyte loss and cartilage injury in OA.
Methods
A mouse model of OA was generated by destabilization of the medial meniscus. Histological staining was performed to evaluate the pathological changes in the knee joint tissue, the cartilage morphology, and the osteoblast population. A high-throughput sequencing analysis was performed to analyze aberrantly expressed genes in OA cartilage. Gain- or loss-of-function assays of dishevelled segment polarity protein 1 (DVL1) and Sp2 transcription factor (SP2) were carried out to analyze their effects on cartilage injury in mice and chondrocyte apoptosis in vitro. The interaction between SP2 and DVL1 was verified by chromatin immunoprecipitation and luciferase assays.
Results
DVL1 was expressed at aberrantly high levels in the cartilage of OA mice. Its knockdown suppressed protein levels and transcriptional activity of β-catenin, thereby reducing cartilage damage and loss in mice. In vitro, chondrocyte apoptosis was inhibited upon DVL1 silencing. SP2, poorly expressed in OA cartilage, was found to repress DVL1 transcription by binding to its promoter. Overexpression of SP2 similarly alleviated cartilage injury and chondrocyte loss; however, these effects were negated by the additional DVL1 overexpression.
Conclusion
This study demonstrates that SP2 represses DVL1 transcription and inactivates the Wnt/β-catenin signaling, thus alleviating chondrocyte loss and cartilage injury in OA mice.
期刊介绍:
The aims and scope of The Journal of Gene Medicine include cutting-edge science of gene transfer and its applications in gene and cell therapy, genome editing with precision nucleases, epigenetic modifications of host genome by small molecules, siRNA, microRNA and other noncoding RNAs as therapeutic gene-modulating agents or targets, biomarkers for precision medicine, and gene-based prognostic/diagnostic studies.
Key areas of interest are the design of novel synthetic and viral vectors, novel therapeutic nucleic acids such as mRNA, modified microRNAs and siRNAs, antagomirs, aptamers, antisense and exon-skipping agents, refined genome editing tools using nucleic acid /protein combinations, physically or biologically targeted delivery and gene modulation, ex vivo or in vivo pharmacological studies including animal models, and human clinical trials.
Papers presenting research into the mechanisms underlying transfer and action of gene medicines, the application of the new technologies for stem cell modification or nucleic acid based vaccines, the identification of new genetic or epigenetic variations as biomarkers to direct precision medicine, and the preclinical/clinical development of gene/expression signatures indicative of diagnosis or predictive of prognosis are also encouraged.