{"title":"On the Constitutive Behavior of Linear Viscoelastic Solids Under the Plane Stress Condition","authors":"Bojan B. Guzina, Marc Bonnet","doi":"10.1007/s10659-025-10136-6","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by the recent experimental and analytical developments enabling high-fidelity material characterization of (heterogeneous) sheet-like solid specimens, we seek to elucidate the constitutive behavior of linear viscoelastic solids under the plane stress condition. More specifically, our goal is to expose the relationship between the plane-stress viscoelastic constitutive parameters and their (native) “bulk” counterparts. To facilitate the sought reduction of the three-dimensional (3D) constitutive behavior, we deploy the concept of projection operators and focus on the frequency-domain behavior by resorting to the Fourier transform and the mathematical framework of tempered distributions, which extends the Fourier analysis to functions (common in linear viscoelasticity) for which Fourier integrals are not convergent. In the analysis, our primary focus is the on class of linear viscoelastic solids whose 3D rheological behavior is described by a set of constant-coefficient ordinary differential equations, each corresponding to a generic arrangement of “springs” and “dashpots”. On reducing the general formulation to the isotropic case, we proceed with an in-depth investigation of viscoelastic solids whose bulk and shear modulus each derive from a suite of classical “spring and dashpot” configurations. To enable faithful reconstruction of the 3D constitutive parameters of natural and engineered solids via (i) thin-sheet testing and (ii) applications of the error-in-constitutive-relation approach to the inversion of (kinematic) sensory data, we also examine the reduction of thermodynamic potentials describing linear viscoelasticity under the plane stress condition. The analysis is complemented by a set of analytical and numerical examples, illustrating the effect on the plane stress condition on the behavior of isotropic and anisotropic viscoelastic solids.</p></div>","PeriodicalId":624,"journal":{"name":"Journal of Elasticity","volume":"157 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10659-025-10136-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Elasticity","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10659-025-10136-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by the recent experimental and analytical developments enabling high-fidelity material characterization of (heterogeneous) sheet-like solid specimens, we seek to elucidate the constitutive behavior of linear viscoelastic solids under the plane stress condition. More specifically, our goal is to expose the relationship between the plane-stress viscoelastic constitutive parameters and their (native) “bulk” counterparts. To facilitate the sought reduction of the three-dimensional (3D) constitutive behavior, we deploy the concept of projection operators and focus on the frequency-domain behavior by resorting to the Fourier transform and the mathematical framework of tempered distributions, which extends the Fourier analysis to functions (common in linear viscoelasticity) for which Fourier integrals are not convergent. In the analysis, our primary focus is the on class of linear viscoelastic solids whose 3D rheological behavior is described by a set of constant-coefficient ordinary differential equations, each corresponding to a generic arrangement of “springs” and “dashpots”. On reducing the general formulation to the isotropic case, we proceed with an in-depth investigation of viscoelastic solids whose bulk and shear modulus each derive from a suite of classical “spring and dashpot” configurations. To enable faithful reconstruction of the 3D constitutive parameters of natural and engineered solids via (i) thin-sheet testing and (ii) applications of the error-in-constitutive-relation approach to the inversion of (kinematic) sensory data, we also examine the reduction of thermodynamic potentials describing linear viscoelasticity under the plane stress condition. The analysis is complemented by a set of analytical and numerical examples, illustrating the effect on the plane stress condition on the behavior of isotropic and anisotropic viscoelastic solids.
期刊介绍:
The Journal of Elasticity was founded in 1971 by Marvin Stippes (1922-1979), with its main purpose being to report original and significant discoveries in elasticity. The Journal has broadened in scope over the years to include original contributions in the physical and mathematical science of solids. The areas of rational mechanics, mechanics of materials, including theories of soft materials, biomechanics, and engineering sciences that contribute to fundamental advancements in understanding and predicting the complex behavior of solids are particularly welcomed. The role of elasticity in all such behavior is well recognized and reporting significant discoveries in elasticity remains important to the Journal, as is its relation to thermal and mass transport, electromagnetism, and chemical reactions. Fundamental research that applies the concepts of physics and elements of applied mathematical science is of particular interest. Original research contributions will appear as either full research papers or research notes. Well-documented historical essays and reviews also are welcomed. Materials that will prove effective in teaching will appear as classroom notes. Computational and/or experimental investigations that emphasize relationships to the modeling of the novel physical behavior of solids at all scales are of interest. Guidance principles for content are to be found in the current interests of the Editorial Board.