{"title":"Improved and automated krypton assay for low-background xenon detectors with Auto-RGMS","authors":"Matteo Guida, Ying-Ting Lin, Hardy Simgen","doi":"10.1140/epjc/s10052-025-14262-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ultra-sensitive quantification of trace radioactive krypton-85 (<span>\\(^{85}\\)</span>Kr) is essential for low-background experiments, particularly for next-generation searches of galactic dark matter and neutrino physics using xenon-based time projection chambers (TPCs). While the rare gas mass spectrometer (RGMS) represents the current state-of-the-art for krypton detection in the field, we are developing a fully automated system (Auto-RGMS) to overcome the limitations of its manual operation. Auto-RGMS incorporates a robust control system for rapid measurements and minimized systematic uncertainties. A primary goal is to reach detection limits in the low parts-per-quadrillion (ppq) range for natural krypton by improving the chromatography stage to enhance the separation of krypton from xenon. Investigations into various adsorbent materials identified two candidates. HayeSep Q offers a 12-fold improvement in chromatographic resolution for xenon/krypton separation compared to the previously used adsorbent. Alternatively, HayeSep D provides a more limited improvement in resolution while allowing a higher measurement frequency because of its moderate retention-induced contamination after each measurement. By automating krypton assays and achieving ppq sensitivity, Auto-RGMS will be an indispensable tool for next-generation detectors, maximizing their scientific potential.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 5","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-025-14262-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-025-14262-2","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-sensitive quantification of trace radioactive krypton-85 (\(^{85}\)Kr) is essential for low-background experiments, particularly for next-generation searches of galactic dark matter and neutrino physics using xenon-based time projection chambers (TPCs). While the rare gas mass spectrometer (RGMS) represents the current state-of-the-art for krypton detection in the field, we are developing a fully automated system (Auto-RGMS) to overcome the limitations of its manual operation. Auto-RGMS incorporates a robust control system for rapid measurements and minimized systematic uncertainties. A primary goal is to reach detection limits in the low parts-per-quadrillion (ppq) range for natural krypton by improving the chromatography stage to enhance the separation of krypton from xenon. Investigations into various adsorbent materials identified two candidates. HayeSep Q offers a 12-fold improvement in chromatographic resolution for xenon/krypton separation compared to the previously used adsorbent. Alternatively, HayeSep D provides a more limited improvement in resolution while allowing a higher measurement frequency because of its moderate retention-induced contamination after each measurement. By automating krypton assays and achieving ppq sensitivity, Auto-RGMS will be an indispensable tool for next-generation detectors, maximizing their scientific potential.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.