Sign Language To Sign Language Translator

Sharath S R , Suraj S , Abishek Kumar G M , P Siddharth , Nalinadevi K
{"title":"Sign Language To Sign Language Translator","authors":"Sharath S R ,&nbsp;Suraj S ,&nbsp;Abishek Kumar G M ,&nbsp;P Siddharth ,&nbsp;Nalinadevi K","doi":"10.1016/j.procs.2025.03.213","DOIUrl":null,"url":null,"abstract":"<div><div>Sign languages differ between countries, regions, and even communities within the same country, leading to communication barriers when interacting with deaf individuals from different linguistic backgrounds. This paper introduces a novel approach for sign language-to-sign language translation, enabling seamless communication across diverse deaf communities. The proposed model translates source sign language images to avatar sign images of the target language by utilizing separate key point estimation models for recognizing static sign elements that include handshape, orientation and position, achieving an accuracy of 88%. The research work uses HamNoSys as the intermediate representation to capture the essential elements of signs in the translation process. The HamNoSys sequence migration task is accomplished using the Seq2Seq model with a BLEU-1 score of 0.85. The target HamNoSys sequences are converted to machine-readable format (SiGML) to render the 3D avatar sign images. Experiments are done using static signs from three distinct sign languages.</div></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"260 ","pages":"Pages 373-381"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050925009573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sign languages differ between countries, regions, and even communities within the same country, leading to communication barriers when interacting with deaf individuals from different linguistic backgrounds. This paper introduces a novel approach for sign language-to-sign language translation, enabling seamless communication across diverse deaf communities. The proposed model translates source sign language images to avatar sign images of the target language by utilizing separate key point estimation models for recognizing static sign elements that include handshape, orientation and position, achieving an accuracy of 88%. The research work uses HamNoSys as the intermediate representation to capture the essential elements of signs in the translation process. The HamNoSys sequence migration task is accomplished using the Seq2Seq model with a BLEU-1 score of 0.85. The target HamNoSys sequences are converted to machine-readable format (SiGML) to render the 3D avatar sign images. Experiments are done using static signs from three distinct sign languages.
手语到手语翻译
手语在不同国家、地区甚至同一国家的社区之间都存在差异,这导致与不同语言背景的聋人交流时存在沟通障碍。本文介绍了一种新的手语到手语翻译方法,使不同聋人社区之间的无缝沟通成为可能。该模型利用独立的关键点估计模型识别手部形状、方向和位置等静态符号元素,将源手语图像转换为目标语言的化身手势图像,准确率达到88%。本研究使用HamNoSys作为中介表征来捕捉翻译过程中符号的基本要素。HamNoSys序列迁移任务使用BLEU-1分数为0.85的Seq2Seq模型完成。目标HamNoSys序列被转换为机器可读格式(SiGML),以呈现3D头像符号图像。实验使用了三种不同手语的静态符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信