{"title":"Nanodiscs and solution nuclear magnetic resonance","authors":"Olga Vinogradova","doi":"10.1016/j.sbi.2025.103067","DOIUrl":null,"url":null,"abstract":"<div><div>Although membrane proteins constitute a significant portion of the genomes of all species and represent well-validated targets for numerous therapeutic interventions, high-resolution structural knowledge of this class of proteins still falls behind that of their soluble counterparts. Despite serious technological developments in the methods presently available for structural characterizations, as well as decades spent on such investigations, membrane proteins remain notoriously difficult to study. This is particularly true for environments which mimic native membranes well enough to maintain their proper functional states. This mini review covers the most recent advances in the structural and dynamic characterization of membrane proteins through the utilization of solution nuclear magnetic resonance methods applied to lipid nanodiscs.</div></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"93 ","pages":"Article 103067"},"PeriodicalIF":6.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X25000855","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although membrane proteins constitute a significant portion of the genomes of all species and represent well-validated targets for numerous therapeutic interventions, high-resolution structural knowledge of this class of proteins still falls behind that of their soluble counterparts. Despite serious technological developments in the methods presently available for structural characterizations, as well as decades spent on such investigations, membrane proteins remain notoriously difficult to study. This is particularly true for environments which mimic native membranes well enough to maintain their proper functional states. This mini review covers the most recent advances in the structural and dynamic characterization of membrane proteins through the utilization of solution nuclear magnetic resonance methods applied to lipid nanodiscs.
期刊介绍:
Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed.
In COSB, we help the reader by providing in a systematic manner:
1. The views of experts on current advances in their field in a clear and readable form.
2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications.
[...]
The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance.
-Folding and Binding-
Nucleic acids and their protein complexes-
Macromolecular Machines-
Theory and Simulation-
Sequences and Topology-
New constructs and expression of proteins-
Membranes-
Engineering and Design-
Carbohydrate-protein interactions and glycosylation-
Biophysical and molecular biological methods-
Multi-protein assemblies in signalling-
Catalysis and Regulation