Juliette Vicente , Stuart Mead , Gabor Kereszturi , Craig Miller
{"title":"Simulation of the 2012 Te Maari debris avalanche: Insight into the failure mechanics and the role of the hydrothermal system","authors":"Juliette Vicente , Stuart Mead , Gabor Kereszturi , Craig Miller","doi":"10.1016/j.jvolgeores.2025.108351","DOIUrl":null,"url":null,"abstract":"<div><div>Composite volcanoes consist of alternating layers with varying mechanical properties, which contribute to the instability of the flanks. This instability can lead to the onset of mass flows down volcanic slopes, posing significant risks to nearby populations and infrastructures. Tongariro, an active andesite volcano, experienced one of New Zealand’s most recent debris avalanches at the Upper Te Maari crater on August 6, 2012. This debris avalanche, initiated simultaneously with a small-magnitude earthquake, released a volume of 7 × 10<span><math><msup><mrow></mrow><mrow><mn>5</mn></mrow></msup></math></span> m<span><math><msup><mrow></mrow><mrow><mn>3</mn></mrow></msup></math></span> of material from the source, which by unloading the pressurised vapour-dominated hydrothermal system, led to a phreatic eruption. This paper aims to better constrain the preparatory and triggering factors, along with the failure mechanics, that led to the 2012 debris avalanche. To achieve this, we applied slope stability finite-element modelling to assess the volcanic slope’s sensitivity to varying groundwater, seismic and mechanical conditions. Model results closely match the observed failure when considering the strength of hydrothermally altered rocks subjected to an increased pore pressure at shallow depth. We found that even a relatively minor rise in pore pressure, <span><math><mo>≈</mo></math></span> 250 kPa in the upper layers, could replicate the observed failure at Te Maari. Our simulations also reveal that this debris avalanche might be a multiple-stage failure involving the progressive sliding of two distinct blocks. These findings enhance our understanding of Tongariro’s structure and improve hazard assessments for future potential collapses at Tongariro and other New Zealand volcanoes.</div></div>","PeriodicalId":54753,"journal":{"name":"Journal of Volcanology and Geothermal Research","volume":"465 ","pages":"Article 108351"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Volcanology and Geothermal Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377027325000873","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Composite volcanoes consist of alternating layers with varying mechanical properties, which contribute to the instability of the flanks. This instability can lead to the onset of mass flows down volcanic slopes, posing significant risks to nearby populations and infrastructures. Tongariro, an active andesite volcano, experienced one of New Zealand’s most recent debris avalanches at the Upper Te Maari crater on August 6, 2012. This debris avalanche, initiated simultaneously with a small-magnitude earthquake, released a volume of 7 × 10 m of material from the source, which by unloading the pressurised vapour-dominated hydrothermal system, led to a phreatic eruption. This paper aims to better constrain the preparatory and triggering factors, along with the failure mechanics, that led to the 2012 debris avalanche. To achieve this, we applied slope stability finite-element modelling to assess the volcanic slope’s sensitivity to varying groundwater, seismic and mechanical conditions. Model results closely match the observed failure when considering the strength of hydrothermally altered rocks subjected to an increased pore pressure at shallow depth. We found that even a relatively minor rise in pore pressure, 250 kPa in the upper layers, could replicate the observed failure at Te Maari. Our simulations also reveal that this debris avalanche might be a multiple-stage failure involving the progressive sliding of two distinct blocks. These findings enhance our understanding of Tongariro’s structure and improve hazard assessments for future potential collapses at Tongariro and other New Zealand volcanoes.
期刊介绍:
An international research journal with focus on volcanic and geothermal processes and their impact on the environment and society.
Submission of papers covering the following aspects of volcanology and geothermal research are encouraged:
(1) Geological aspects of volcanic systems: volcano stratigraphy, structure and tectonic influence; eruptive history; evolution of volcanic landforms; eruption style and progress; dispersal patterns of lava and ash; analysis of real-time eruption observations.
(2) Geochemical and petrological aspects of volcanic rocks: magma genesis and evolution; crystallization; volatile compositions, solubility, and degassing; volcanic petrography and textural analysis.
(3) Hydrology, geochemistry and measurement of volcanic and hydrothermal fluids: volcanic gas emissions; fumaroles and springs; crater lakes; hydrothermal mineralization.
(4) Geophysical aspects of volcanic systems: physical properties of volcanic rocks and magmas; heat flow studies; volcano seismology, geodesy and remote sensing.
(5) Computational modeling and experimental simulation of magmatic and hydrothermal processes: eruption dynamics; magma transport and storage; plume dynamics and ash dispersal; lava flow dynamics; hydrothermal fluid flow; thermodynamics of aqueous fluids and melts.
(6) Volcano hazard and risk research: hazard zonation methodology, development of forecasting tools; assessment techniques for vulnerability and impact.