On the Inverse Problem of the k-th Davenport Constants for Groups of Rank 2

IF 1 2区 数学 Q1 MATHEMATICS
Qinghai Zhong
{"title":"On the Inverse Problem of the k-th Davenport Constants for Groups of Rank 2","authors":"Qinghai Zhong","doi":"10.1007/s00493-025-00153-3","DOIUrl":null,"url":null,"abstract":"<p>For a finite abelian group <i>G</i> and a positive integer <i>k</i>, let <span>\\(\\textsf{D}_k(G)\\)</span> denote the smallest integer <span>\\(\\ell \\)</span> such that each sequence over <i>G</i> of length at least <span>\\(\\ell \\)</span> has <i>k</i> disjoint nontrivial zero-sum subsequences. It is known that <span>\\(\\mathsf D_k(G)=n_1+kn_2-1\\)</span> if <span>\\(G\\cong C_{n_1}\\oplus C_{n_2}\\)</span> is a rank 2 group, where <span>\\(1&lt;n_1\\, | \\,n_2\\)</span>. We investigate the associated inverse problem for rank 2 groups, that is, characterizing the structure of zero-sum sequences of length <span>\\(\\mathsf D_k(G)\\)</span> that can not be partitioned into <span>\\(k+1\\)</span> nontrivial zero-sum subsequences.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"45 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-025-00153-3","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a finite abelian group G and a positive integer k, let \(\textsf{D}_k(G)\) denote the smallest integer \(\ell \) such that each sequence over G of length at least \(\ell \) has k disjoint nontrivial zero-sum subsequences. It is known that \(\mathsf D_k(G)=n_1+kn_2-1\) if \(G\cong C_{n_1}\oplus C_{n_2}\) is a rank 2 group, where \(1<n_1\, | \,n_2\). We investigate the associated inverse problem for rank 2 groups, that is, characterizing the structure of zero-sum sequences of length \(\mathsf D_k(G)\) that can not be partitioned into \(k+1\) nontrivial zero-sum subsequences.

2秩群的第k个Davenport常数的反问题
对于有限阿贝尔群G和正整数k,设\(\textsf{D}_k(G)\)表示最小整数\(\ell \),使得G上长度至少为\(\ell \)的每个序列有k个不相交的非平凡零和子序列。已知\(\mathsf D_k(G)=n_1+kn_2-1\),如果\(G\cong C_{n_1}\oplus C_{n_2}\)是2级基团,其中\(1<n_1\, | \,n_2\)。我们研究了秩2群的相关逆问题,即描述了长度为\(\mathsf D_k(G)\)且不能划分为\(k+1\)非平凡零和子序列的零和序列的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信