{"title":"Optimal Transport with Arbitrary Prior for Dynamic Resolution Network","authors":"Zhizhong Zhang, Shujun Li, Chenyang Zhang, Lizhuang Ma, Xin Tan, Yuan Xie","doi":"10.1007/s11263-025-02483-7","DOIUrl":null,"url":null,"abstract":"<p>Dynamic resolution network is proved to be crucial in reducing computational redundancy by automatically assigning satisfactory resolution for each input image. However, it is observed that resolution choices are often collapsed, where prior works tend to assign images to the resolution routes whose computational cost is close to the required FLOPs. In this paper, we propose a novel optimal transport dynamic resolution network (OTD-Net) by establishing an intrinsic connection between resolution assignment and optimal transport problem. In this framework, each sample owns a resolution assignment choice viewed as supplier, and each resolution requires unallocated images considered as demander. With two assignment priors, OTD-Net benefits from the non-collapse division under theoretical support, and produces the desired assignment policy by balancing the computation budget and prediction accuracy. On that basis, a multi-resolution inference is proposed to ensemble low-resolution predictions. Extensive experiments including image classification, object detection and depth estimation, show our approach is both efficient and effective for both ResNet and Transformer, achieving state-of-the-art performance on various benchmarks.</p>","PeriodicalId":13752,"journal":{"name":"International Journal of Computer Vision","volume":"9 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11263-025-02483-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic resolution network is proved to be crucial in reducing computational redundancy by automatically assigning satisfactory resolution for each input image. However, it is observed that resolution choices are often collapsed, where prior works tend to assign images to the resolution routes whose computational cost is close to the required FLOPs. In this paper, we propose a novel optimal transport dynamic resolution network (OTD-Net) by establishing an intrinsic connection between resolution assignment and optimal transport problem. In this framework, each sample owns a resolution assignment choice viewed as supplier, and each resolution requires unallocated images considered as demander. With two assignment priors, OTD-Net benefits from the non-collapse division under theoretical support, and produces the desired assignment policy by balancing the computation budget and prediction accuracy. On that basis, a multi-resolution inference is proposed to ensemble low-resolution predictions. Extensive experiments including image classification, object detection and depth estimation, show our approach is both efficient and effective for both ResNet and Transformer, achieving state-of-the-art performance on various benchmarks.
期刊介绍:
The International Journal of Computer Vision (IJCV) serves as a platform for sharing new research findings in the rapidly growing field of computer vision. It publishes 12 issues annually and presents high-quality, original contributions to the science and engineering of computer vision. The journal encompasses various types of articles to cater to different research outputs.
Regular articles, which span up to 25 journal pages, focus on significant technical advancements that are of broad interest to the field. These articles showcase substantial progress in computer vision.
Short articles, limited to 10 pages, offer a swift publication path for novel research outcomes. They provide a quicker means for sharing new findings with the computer vision community.
Survey articles, comprising up to 30 pages, offer critical evaluations of the current state of the art in computer vision or offer tutorial presentations of relevant topics. These articles provide comprehensive and insightful overviews of specific subject areas.
In addition to technical articles, the journal also includes book reviews, position papers, and editorials by prominent scientific figures. These contributions serve to complement the technical content and provide valuable perspectives.
The journal encourages authors to include supplementary material online, such as images, video sequences, data sets, and software. This additional material enhances the understanding and reproducibility of the published research.
Overall, the International Journal of Computer Vision is a comprehensive publication that caters to researchers in this rapidly growing field. It covers a range of article types, offers additional online resources, and facilitates the dissemination of impactful research.