{"title":"An exponential cone integer programming and piece-wise linear approximation approach for 0-1 fractional programming","authors":"Hoang Giang Pham, Thuy Anh Ta, Tien Mai","doi":"10.1007/s10878-025-01318-y","DOIUrl":null,"url":null,"abstract":"<p>We study a class of binary fractional programs commonly encountered in important application domains such as assortment optimization and facility location. These problems are known to be NP-hard to approximate within any constant factor, and existing solution approaches typically rely on mixed-integer linear programming or second-order cone programming reformulations. These methods often utilize linearization techniques (e.g., big-M or McCormick inequalities), which can result in weak continuous relaxations. In this work, we propose a novel approach based on an exponential cone reformulation combined with piecewise linear approximation. This allows the problem to be solved efficiently using standard cutting-plane or branch-and-cut procedures. We further provide a theoretical analysis of the approximation quality yielded by our reformulation and discuss strategies for optimizing the problem size of the exponential cone formulation. Experiments on instances of various sizes demonstrate that our approach delivers competitive performance on small and medium instances while offering superior performance on large instances compared to state-of-the-art baselines.</p>","PeriodicalId":50231,"journal":{"name":"Journal of Combinatorial Optimization","volume":"19 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10878-025-01318-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
We study a class of binary fractional programs commonly encountered in important application domains such as assortment optimization and facility location. These problems are known to be NP-hard to approximate within any constant factor, and existing solution approaches typically rely on mixed-integer linear programming or second-order cone programming reformulations. These methods often utilize linearization techniques (e.g., big-M or McCormick inequalities), which can result in weak continuous relaxations. In this work, we propose a novel approach based on an exponential cone reformulation combined with piecewise linear approximation. This allows the problem to be solved efficiently using standard cutting-plane or branch-and-cut procedures. We further provide a theoretical analysis of the approximation quality yielded by our reformulation and discuss strategies for optimizing the problem size of the exponential cone formulation. Experiments on instances of various sizes demonstrate that our approach delivers competitive performance on small and medium instances while offering superior performance on large instances compared to state-of-the-art baselines.
期刊介绍:
The objective of Journal of Combinatorial Optimization is to advance and promote the theory and applications of combinatorial optimization, which is an area of research at the intersection of applied mathematics, computer science, and operations research and which overlaps with many other areas such as computation complexity, computational biology, VLSI design, communication networks, and management science. It includes complexity analysis and algorithm design for combinatorial optimization problems, numerical experiments and problem discovery with applications in science and engineering.
The Journal of Combinatorial Optimization publishes refereed papers dealing with all theoretical, computational and applied aspects of combinatorial optimization. It also publishes reviews of appropriate books and special issues of journals.