Alejandro Martínez León, Benjamin Ries, Jochen S. Hub, Aniket Magarkar
{"title":"Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations","authors":"Alejandro Martínez León, Benjamin Ries, Jochen S. Hub, Aniket Magarkar","doi":"10.1186/s13321-025-01022-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (M<sup>Pro</sup>) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as <span>\\(-10\\,~\\hbox {kcal}\\,\\hbox {mol}^{-1}\\)</span>. Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01022-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01022-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (MPro) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as \(-10\,~\hbox {kcal}\,\hbox {mol}^{-1}\). Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.
期刊介绍:
Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling.
Coverage includes, but is not limited to:
chemical information systems, software and databases, and molecular modelling,
chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases,
computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.