Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alejandro Martínez León, Benjamin Ries, Jochen S. Hub, Aniket Magarkar
{"title":"Moldrug algorithm for an automated ligand binding site exploration by 3D aware molecular enumerations","authors":"Alejandro Martínez León,&nbsp;Benjamin Ries,&nbsp;Jochen S. Hub,&nbsp;Aniket Magarkar","doi":"10.1186/s13321-025-01022-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (M<sup>Pro</sup>) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as <span>\\(-10\\,~\\hbox {kcal}\\,\\hbox {mol}^{-1}\\)</span>. Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01022-3","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01022-3","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We present Moldrug, a computational tool for accelerating the hit-to-lead phase in structure-based drug design. Moldrug explores the chemical space using structural modifications suggested by the CReM library and by optimizing an adaptable fitness function with a genetic algorithm. Moldrug is complemented by Moldrug-Dashboard, a cross-platform and user-friendly graphical interface tailored for the analysis of Moldrug simulations. To illustrate Moldrug, we designed new potential inhibitors targeting the main protease (MPro) of SARS-CoV-2 by optimizing a consensus fitness function that balances binding affinity, drug-likeness, and synthetic accessibility. The designed molecules exhibited high chemical diversity. A subset of the designed molecules were ranked using MM/GBSA and alchemical binding free energy calculations, revealing predicted affinities as low as \(-10\,~\hbox {kcal}\,\hbox {mol}^{-1}\). Moldrug is distributed as a Python package under the Apache 2.0 license. It offers pre-configured multi-parameter fitness functions for molecular design, while being highly adaptable for integrating functionalities from external software. Documentation and tutorials are available at https://moldrug.rtfd.io.

基于三维感知分子枚举的配体结合位点自动探测的Moldrug算法
我们提出了Moldrug,一个计算工具,用于加速基于结构的药物设计的从命中到先导阶段。Moldrug利用CReM库提出的结构修改和遗传算法优化适应性适应度函数来探索化学空间。Moldrug还配有Moldrug- dashboard,这是一个为分析Moldrug模拟而定制的跨平台、用户友好的图形界面。为了说明Moldrug,我们通过优化平衡结合亲和力、药物相似性和合成可及性的共识适应度函数,设计了针对SARS-CoV-2主要蛋白酶(MPro)的新的潜在抑制剂。所设计的分子具有较高的化学多样性。使用MM/GBSA和炼金术结合自由能计算对设计分子的子集进行排名,显示预测的亲和力低至$$-10\,~\hbox {kcal}\,\hbox {mol}^{-1}$$。Moldrug在Apache 2.0许可下作为Python包发布。它为分子设计提供了预先配置的多参数适应度功能,同时高度适应外部软件的集成功能。文档和教程可在https://moldrug.rtfd.io上获得。Moldrug是一个模块化和灵活的开源框架,用于有效地探索化学空间,而无需事先培训。根据炼金术自由能计算,我们设计了新的潜在的SARS-CoV-2 MPro抑制剂,并具有高预测亲和力,从而证明了Moldrug的适用性。Moldrug遵循良好的编码实践,并附有详细的文档,使Moldrug成为化学信息学研究的可访问和适应性强的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信