{"title":"Advancing efficacy prediction for electronic health records based emulated trials in repurposing heart failure therapies.","authors":"Nansu Zong,Shaika Chowdhury,Shibo Zhou,Sivaraman Rajaganapathy,Yue Yu,Liewei Wang,Qiying Dai,Pengyang Li,Xiaoke Liu,Suzette J Bielinski,Jun Chen,Yongbin Chen,James R Cerhan","doi":"10.1038/s41746-025-01705-z","DOIUrl":null,"url":null,"abstract":"The complexities inherent in EHR data create discrepancies between real-world evidence and RCTs, posing substantial challenges in determining whether a treatment is likely to have a beneficial impact compared to the standard of care in RCTs. The objective of this study is to enhance the prediction of efficacy direction for repurposed drugs tested in RCTs for heart failure (HF). To achieve this, we propose an efficacy direction prediction framework that integrates drug-target predictions with EHR-based Emulation Trials (ET) to derive surrogate endpoints for prediction using HF prognostic markers. Our validation of the proposed novel drug-target prediction model against the BETA benchmark demonstrates superior performance, surpassing existing baseline algorithms. Furthermore, an evaluation of our framework in identifying 17 repurposed drugs-derived from 266 phase 3 HF RCTs-using data from 59,000 patients at the Mayo Clinic highlights its remarkable predictive accuracy.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"1 1","pages":"306"},"PeriodicalIF":12.4000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01705-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The complexities inherent in EHR data create discrepancies between real-world evidence and RCTs, posing substantial challenges in determining whether a treatment is likely to have a beneficial impact compared to the standard of care in RCTs. The objective of this study is to enhance the prediction of efficacy direction for repurposed drugs tested in RCTs for heart failure (HF). To achieve this, we propose an efficacy direction prediction framework that integrates drug-target predictions with EHR-based Emulation Trials (ET) to derive surrogate endpoints for prediction using HF prognostic markers. Our validation of the proposed novel drug-target prediction model against the BETA benchmark demonstrates superior performance, surpassing existing baseline algorithms. Furthermore, an evaluation of our framework in identifying 17 repurposed drugs-derived from 266 phase 3 HF RCTs-using data from 59,000 patients at the Mayo Clinic highlights its remarkable predictive accuracy.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.