Development and usability of a mobile artificial intelligence platform for the management of childhood developmental disorders based on PHRs.

IF 2.2 3区 医学 Q2 HEALTH CARE SCIENCES & SERVICES
Health Informatics Journal Pub Date : 2025-04-01 Epub Date: 2025-05-23 DOI:10.1177/14604582251345331
Eun Kyung Choi, Haemi Choi, Jungun Kim, Hayeon Kim, Sung-Dong Kim, Eunhye Choi, Hyun Jung Kim, Min-Hyeon Park
{"title":"Development and usability of a mobile artificial intelligence platform for the management of childhood developmental disorders based on PHRs.","authors":"Eun Kyung Choi, Haemi Choi, Jungun Kim, Hayeon Kim, Sung-Dong Kim, Eunhye Choi, Hyun Jung Kim, Min-Hyeon Park","doi":"10.1177/14604582251345331","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Emerging technologies, particularly artificial intelligence (AI), offer the potential to personalize healthcare for pediatric developmental disorders, but their development presents challenges. <b>Methods:</b> This study introduces IVORY, a mobile AI platform for managing personal health records (PHRs) in children with developmental disorders. IVORY integrates advanced optical character recognition (OCR)-based text recognition models optimized for diverse medical document types and template-matching algorithms, ensuring standardized data processing. The primary features include digitizing medical records, symptom interpretation, and AI-driven health recommendations. <b>Results:</b> Using pretrained OCR algorithms with 126 diverse medical report types, the platform achieved an OCR success rate of 81%. Input data include fMRI interpretations, psychological assessments, and laboratory findings, whereas outputs offer percentile-based insights and treatment recommendations. Caregivers (3.44 ± 0.67) and professionals (3.50 ± 0.63) highly rated the platform for usability. <b>Conclusions:</b> Despite OCR limitations for low-resolution data, IVORY has the potential to enhance data consolidation, accuracy, and scalability in personalized pediatric healthcare.</p>","PeriodicalId":55069,"journal":{"name":"Health Informatics Journal","volume":"31 2","pages":"14604582251345331"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Informatics Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/14604582251345331","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Emerging technologies, particularly artificial intelligence (AI), offer the potential to personalize healthcare for pediatric developmental disorders, but their development presents challenges. Methods: This study introduces IVORY, a mobile AI platform for managing personal health records (PHRs) in children with developmental disorders. IVORY integrates advanced optical character recognition (OCR)-based text recognition models optimized for diverse medical document types and template-matching algorithms, ensuring standardized data processing. The primary features include digitizing medical records, symptom interpretation, and AI-driven health recommendations. Results: Using pretrained OCR algorithms with 126 diverse medical report types, the platform achieved an OCR success rate of 81%. Input data include fMRI interpretations, psychological assessments, and laboratory findings, whereas outputs offer percentile-based insights and treatment recommendations. Caregivers (3.44 ± 0.67) and professionals (3.50 ± 0.63) highly rated the platform for usability. Conclusions: Despite OCR limitations for low-resolution data, IVORY has the potential to enhance data consolidation, accuracy, and scalability in personalized pediatric healthcare.

基于PHRs的儿童发育障碍管理移动人工智能平台的开发和可用性
新兴技术,特别是人工智能(AI),为儿科发育障碍的个性化医疗保健提供了潜力,但它们的发展也带来了挑战。方法:本研究引入了用于管理发育障碍儿童个人健康记录(PHRs)的移动AI平台IVORY。IVORY集成了先进的基于光学字符识别(OCR)的文本识别模型,针对各种医疗文档类型和模板匹配算法进行了优化,确保了标准化的数据处理。主要功能包括数字化医疗记录、症状解释和人工智能驱动的健康建议。结果:使用预训练的126种不同医疗报告类型的OCR算法,该平台的OCR成功率为81%。输入数据包括功能磁共振成像解释、心理评估和实验室结果,而输出数据则提供基于百分位数的见解和治疗建议。护理人员(3.44±0.67)和专业人员(3.50±0.63)对平台的可用性评价较高。结论:尽管OCR在低分辨率数据方面存在局限性,但IVORY在个性化儿科医疗保健方面具有增强数据整合、准确性和可扩展性的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Health Informatics Journal
Health Informatics Journal HEALTH CARE SCIENCES & SERVICES-MEDICAL INFORMATICS
CiteScore
7.80
自引率
6.70%
发文量
80
审稿时长
6 months
期刊介绍: Health Informatics Journal is an international peer-reviewed journal. All papers submitted to Health Informatics Journal are subject to peer review by members of a carefully appointed editorial board. The journal operates a conventional single-blind reviewing policy in which the reviewer’s name is always concealed from the submitting author.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信