Anna A Valina, Tatyana A Belashova, Anastasia K Yuzman, Sergey P Zadorsky, Evgeniy I Sysoev, Vladimir A Mitkevich, Alexander A Makarov, Alexey P Galkin
{"title":"Functional amyloid protein FXR1 is recruited into neuronal stress granules.","authors":"Anna A Valina, Tatyana A Belashova, Anastasia K Yuzman, Sergey P Zadorsky, Evgeniy I Sysoev, Vladimir A Mitkevich, Alexander A Makarov, Alexey P Galkin","doi":"10.1080/19336896.2025.2505422","DOIUrl":null,"url":null,"abstract":"<p><p>The FXR1 protein regulates the stability and translation of a number of RNA molecules and plays an important role in the regulation of cellular processes under normal conditions and stress. In particular, this protein is known to be a negative regulator of the key proinflammatory cytokine TNF alpha. We had previously shown that FXR1 functioned in the amyloid form in neurons of the brain of jawed vertebrates. Under stress conditions, FXR1 is incorporated into stress granules in some cell lines, but such studies have not been conducted for neuronal cells. Here, we showed the ability of the FXR1 protein to form cytoplasmic granules in a neuroblastoma cell line under various types of stress. This protein colocalizes with core proteins of neuronal stress granules upon heat shock and sodium arsenite treatment. We also showed that FXR1 colocalizes with anti-amyloid antibodies OC under both normal and stress conditions. Given that stress granules are dynamic structures, we propose that amyloid FXR1-containing RNP particles interact with other stress granule proteins through weak intermolecular hydrogen bonds. Using a yeast model system, we found that FXR1 colocalizes and physically interacts with stress granule proteins such as TIA-1, FMRP, FXR2, and SFPQ. Overall, our results provide new insights into the role of the RNA-binding protein FXR1 in neuronal stress response. We believe that FXR1 inactivation in neuronal stress granules can contribute to an increase in the level of the proinflammatory cytokine TNF alpha in neurodegenerative diseases.</p>","PeriodicalId":54585,"journal":{"name":"Prion","volume":"19 1","pages":"1-16"},"PeriodicalIF":1.9000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12118398/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prion","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/19336896.2025.2505422","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/24 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The FXR1 protein regulates the stability and translation of a number of RNA molecules and plays an important role in the regulation of cellular processes under normal conditions and stress. In particular, this protein is known to be a negative regulator of the key proinflammatory cytokine TNF alpha. We had previously shown that FXR1 functioned in the amyloid form in neurons of the brain of jawed vertebrates. Under stress conditions, FXR1 is incorporated into stress granules in some cell lines, but such studies have not been conducted for neuronal cells. Here, we showed the ability of the FXR1 protein to form cytoplasmic granules in a neuroblastoma cell line under various types of stress. This protein colocalizes with core proteins of neuronal stress granules upon heat shock and sodium arsenite treatment. We also showed that FXR1 colocalizes with anti-amyloid antibodies OC under both normal and stress conditions. Given that stress granules are dynamic structures, we propose that amyloid FXR1-containing RNP particles interact with other stress granule proteins through weak intermolecular hydrogen bonds. Using a yeast model system, we found that FXR1 colocalizes and physically interacts with stress granule proteins such as TIA-1, FMRP, FXR2, and SFPQ. Overall, our results provide new insights into the role of the RNA-binding protein FXR1 in neuronal stress response. We believe that FXR1 inactivation in neuronal stress granules can contribute to an increase in the level of the proinflammatory cytokine TNF alpha in neurodegenerative diseases.
期刊介绍:
Prion is the first international peer-reviewed open access journal to focus exclusively on protein folding and misfolding, protein assembly disorders, protein-based and structural inheritance. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The overriding criteria for publication in Prion are originality, scientific merit and general interest.