Swati Jain, Debanjana Das, Abhiyanta Mukherjee, Ipsita Roy
{"title":"Inhibition of PolyGA Dipeptide Repeat Protein Aggregation by Nucleic Acid Aptamers in C9 Amyotrophic Lateral Sclerosis-Frontotemporal Dementia Models.","authors":"Swati Jain, Debanjana Das, Abhiyanta Mukherjee, Ipsita Roy","doi":"10.1007/s12035-025-05075-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hexanucleotide (GGGGCC) repeat expansion in non-coding region of C9ORF72 is the main genetic cause of amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). Gain of toxic function, via RNA or proteins, or loss of function via haploinsufficiency, are probable mechanisms of disease progression. Expanded GGGGCC repeat codes for dipeptide repeat (DPR) proteins which form inclusions in the brain. Among all the dipeptides, aggregates formed by polyGA sequence are the most toxic. In this work, inhibition of aggregation of polyGA DPRs using aptamers has been explored as a therapeutic strategy to delay disease progression. Target-specific, high-affinity RNA aptamers were selected against monomeric (GA)<sub>30</sub>. Selected aptamers showed significant inhibition of aggregation of (GA)<sub>30</sub> in vitro. Inhibitory RNA sequences were seen to form typical secondary structures which was missing in a non-inhibitory sequence. Some of the RNA aptamers showed increased solubilisation of DPRs formed by (GA)<sub>30</sub> and (GA)<sub>60</sub> in a neuronal cell model of ALS-FTD. Decreased aggregation was accompanied by lower oxidative stress and improved cell survival. Importantly, expression level of one of the markers of autophagy was significantly enhanced in the presence of aptamers, explaining lower aggregation observed in these cells. Thus, aptamers may be developed as potential therapeutic agents in C9 ALS-FTD.</p>","PeriodicalId":18762,"journal":{"name":"Molecular Neurobiology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12035-025-05075-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Hexanucleotide (GGGGCC) repeat expansion in non-coding region of C9ORF72 is the main genetic cause of amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD). Gain of toxic function, via RNA or proteins, or loss of function via haploinsufficiency, are probable mechanisms of disease progression. Expanded GGGGCC repeat codes for dipeptide repeat (DPR) proteins which form inclusions in the brain. Among all the dipeptides, aggregates formed by polyGA sequence are the most toxic. In this work, inhibition of aggregation of polyGA DPRs using aptamers has been explored as a therapeutic strategy to delay disease progression. Target-specific, high-affinity RNA aptamers were selected against monomeric (GA)30. Selected aptamers showed significant inhibition of aggregation of (GA)30 in vitro. Inhibitory RNA sequences were seen to form typical secondary structures which was missing in a non-inhibitory sequence. Some of the RNA aptamers showed increased solubilisation of DPRs formed by (GA)30 and (GA)60 in a neuronal cell model of ALS-FTD. Decreased aggregation was accompanied by lower oxidative stress and improved cell survival. Importantly, expression level of one of the markers of autophagy was significantly enhanced in the presence of aptamers, explaining lower aggregation observed in these cells. Thus, aptamers may be developed as potential therapeutic agents in C9 ALS-FTD.
期刊介绍:
Molecular Neurobiology is an exciting journal for neuroscientists needing to stay in close touch with progress at the forefront of molecular brain research today. It is an especially important periodical for graduate students and "postdocs," specifically designed to synthesize and critically assess research trends for all neuroscientists hoping to stay active at the cutting edge of this dramatically developing area. This journal has proven to be crucial in departmental libraries, serving as essential reading for every committed neuroscientist who is striving to keep abreast of all rapid developments in a forefront field. Most recent significant advances in experimental and clinical neuroscience have been occurring at the molecular level. Until now, there has been no journal devoted to looking closely at this fragmented literature in a critical, coherent fashion. Each submission is thoroughly analyzed by scientists and clinicians internationally renowned for their special competence in the areas treated.