Shuyu Wang, Emilio Perucca, Samuel F Berkovic, Piero Perucca
{"title":"Precision therapies for genetic epilepsies in 2025: Promises and pitfalls.","authors":"Shuyu Wang, Emilio Perucca, Samuel F Berkovic, Piero Perucca","doi":"10.1002/epi4.70065","DOIUrl":null,"url":null,"abstract":"<p><p>By targeting the underlying etiology, precision therapies offer an exciting paradigm shift to improve the stagnant outcomes of drug-resistant epilepsies, including developmental and epileptic encephalopathies. Unlike conventional antiseizure medications (ASMs) which only treat the symptoms (seizures) but have no effect on the underlying disease, precision therapies have the potential to suppress not only the seizures but also disabling comorbidities, including cognitive and behavioral abnormalities, which share the same causative mechanisms. Monogenic epilepsies are an attractive target for precision therapies because of their well-defined molecular mechanisms which can be tested in vitro and can be counteracted by specific drugs. Unfortunately, however, for the vast majority of proposed precision therapies, the evidence for their clinical efficacy is either non-existent or limited to uncontrolled observational accounts. Everolimus is the sole precision therapy with a seizure-related indication with class I evidence of efficacy, highlighting the practical and ethical challenges in obtaining high-level evidence. Here, we review the evidence landscape for candidate precision therapies, including repurposed and innovative treatments currently in development, discuss lessons learned from their use, and highlight strategies to improve their application and evaluation in the clinical setting. PLAIN LANGUAGE SUMMARY: Precision therapies offer a new approach to treat drug-resistant monogenic epilepsies, that is, epilepsies caused by a defect in a single gene. Unlike traditional antiseizure medications, precision therapies target the cause of the disease and have the potential to improve not only seizure control but also concomitant conditions such as cognitive and behavioral disorders. To date, the evidence derived from the clinical use of most proposed precision therapies is limited. This review explores current evidence and strategies to advance their development.</p>","PeriodicalId":12038,"journal":{"name":"Epilepsia Open","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia Open","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/epi4.70065","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
By targeting the underlying etiology, precision therapies offer an exciting paradigm shift to improve the stagnant outcomes of drug-resistant epilepsies, including developmental and epileptic encephalopathies. Unlike conventional antiseizure medications (ASMs) which only treat the symptoms (seizures) but have no effect on the underlying disease, precision therapies have the potential to suppress not only the seizures but also disabling comorbidities, including cognitive and behavioral abnormalities, which share the same causative mechanisms. Monogenic epilepsies are an attractive target for precision therapies because of their well-defined molecular mechanisms which can be tested in vitro and can be counteracted by specific drugs. Unfortunately, however, for the vast majority of proposed precision therapies, the evidence for their clinical efficacy is either non-existent or limited to uncontrolled observational accounts. Everolimus is the sole precision therapy with a seizure-related indication with class I evidence of efficacy, highlighting the practical and ethical challenges in obtaining high-level evidence. Here, we review the evidence landscape for candidate precision therapies, including repurposed and innovative treatments currently in development, discuss lessons learned from their use, and highlight strategies to improve their application and evaluation in the clinical setting. PLAIN LANGUAGE SUMMARY: Precision therapies offer a new approach to treat drug-resistant monogenic epilepsies, that is, epilepsies caused by a defect in a single gene. Unlike traditional antiseizure medications, precision therapies target the cause of the disease and have the potential to improve not only seizure control but also concomitant conditions such as cognitive and behavioral disorders. To date, the evidence derived from the clinical use of most proposed precision therapies is limited. This review explores current evidence and strategies to advance their development.