{"title":"Endometriosis-derived exosomes encapsulated miR-196a-5p mediate macrophage polarization through regulation of the Hippo pathway","authors":"Bin Lu, Qixiang Huang, Yanyu Zhong","doi":"10.1002/ccs3.70020","DOIUrl":null,"url":null,"abstract":"<p>Endometriosis (EMs) is a disease that adversely affects women's health. Immune imbalance is an important factor contributing to EMs, and exosomes (Exo) play an important role in immunomodulation. The purpose of this study was to investigate the effect of exosomes derived from the blood of patients with EMs on macrophage polarization and elucidate the underlying mechanisms. Exosomes were isolated from the serum of healthy controls (control exosomes) and patients with EMs (EMs exosomes). Macrophage polarization levels were detected using flow cytometry (FCM), RT-qPCR, and Western blot. Subsequently, we used RNA sequencing to analyze differential microRNAs (miRNA) and associated pathways. Electroporation techniques were used to modify the exosomes. The associated pathways were analyzed by Western blot. Finally, 12Z cells were co-cultured with macrophages of different polarizations, and the viability and metastasis of 12Z cells were calculated by cell counting kit-8 (CCK-8), scratch, and Transwell. EMs exosomes induced M2-type polarization in macrophages. RNA sequencing results showed that miR-196a-5p was dramatically decreased in EMs exosomes, whereas overexpression of miR-196a-5p in EMs exosomes could inhibit the M2-type polarization of macrophages and activate the Hippo pathway. In addition, M2-type macrophages promoted 12Z cell proliferation and metastasis. These findings suggest that serum-derived exosomes encapsulating miR-196a-5p alleviate endometriosis by promoting M1-type macrophage polarization via Hippo pathway activation.</p>","PeriodicalId":15226,"journal":{"name":"Journal of Cell Communication and Signaling","volume":"19 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ccs3.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ccs3.70020","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Endometriosis (EMs) is a disease that adversely affects women's health. Immune imbalance is an important factor contributing to EMs, and exosomes (Exo) play an important role in immunomodulation. The purpose of this study was to investigate the effect of exosomes derived from the blood of patients with EMs on macrophage polarization and elucidate the underlying mechanisms. Exosomes were isolated from the serum of healthy controls (control exosomes) and patients with EMs (EMs exosomes). Macrophage polarization levels were detected using flow cytometry (FCM), RT-qPCR, and Western blot. Subsequently, we used RNA sequencing to analyze differential microRNAs (miRNA) and associated pathways. Electroporation techniques were used to modify the exosomes. The associated pathways were analyzed by Western blot. Finally, 12Z cells were co-cultured with macrophages of different polarizations, and the viability and metastasis of 12Z cells were calculated by cell counting kit-8 (CCK-8), scratch, and Transwell. EMs exosomes induced M2-type polarization in macrophages. RNA sequencing results showed that miR-196a-5p was dramatically decreased in EMs exosomes, whereas overexpression of miR-196a-5p in EMs exosomes could inhibit the M2-type polarization of macrophages and activate the Hippo pathway. In addition, M2-type macrophages promoted 12Z cell proliferation and metastasis. These findings suggest that serum-derived exosomes encapsulating miR-196a-5p alleviate endometriosis by promoting M1-type macrophage polarization via Hippo pathway activation.
期刊介绍:
The Journal of Cell Communication and Signaling provides a forum for fundamental and translational research. In particular, it publishes papers discussing intercellular and intracellular signaling pathways that are particularly important to understand how cells interact with each other and with the surrounding environment, and how cellular behavior contributes to pathological states. JCCS encourages the submission of research manuscripts, timely reviews and short commentaries discussing recent publications, key developments and controversies.
Research manuscripts can be published under two different sections :
In the Pathology and Translational Research Section (Section Editor Andrew Leask) , manuscripts report original research dealing with celllular aspects of normal and pathological signaling and communication, with a particular interest in translational research.
In the Molecular Signaling Section (Section Editor Satoshi Kubota) manuscripts report original signaling research performed at molecular levels with a particular interest in the functions of intracellular and membrane components involved in cell signaling.