{"title":"Synthesis of ZnSe thin films by solution-processed spin coating method for photonic integration applications","authors":"Tanzina Rahman, Md. Alamin Hossain Pappu, Bipanko Kumar Mondal, Syeda Samiha Nushin, Jaker Hossain","doi":"10.1186/s40712-025-00299-4","DOIUrl":null,"url":null,"abstract":"<div><p>This investigation introduces a novel method for the fabrication of ZnSe thin films on glass substrates through the spin coating technique which employs thiol-amine cosolvents. The thiol-amine co-solvent system efficiently dissolves several metal and metal chalcogenide precursors, facilitating cost-effective, and low-temperature solution-based deposition compatible with flexible substrates. The synthesized ZnSe thin films underwent air annealing at temperatures between 250 and 350 °C, thereby improving their structural and optical characteristics. The polycrystalline nature of ZnSe was elucidated via X-ray diffraction (XRD) analysis, while scanning electron microscopy (SEM) assured the rise of surface smoothness and uniformity with annealing temperature. Energy-dispersive spectroscopy (EDS) analysis indicated near-stoichiometric ZnSe composition, and Fourier-transform infrared (FTIR) spectroscopy identified Zn–Se stretching vibrations in the 960–1120 cm<sup>−1</sup> range. The optical data demonstrated high transmittance with an optical bandgap of 3.32–3.85 eV. Furthermore, optical data of ZnSe were embarked for computation of Ge-on-ZnSe waveguide with SiO<sub>2</sub> cladding for long-wave infrared (LWIR) light. The waveguide showed a remarkable power confinement factor (PCF) of ~ 0.99 with nearly 1 dB/cm loss at a laser wavelength of 8 μm. These outputs are highly optimistic for the fabrication of solution-processed ZnSe for LWIR photonic integration.</p></div>","PeriodicalId":592,"journal":{"name":"International Journal of Mechanical and Materials Engineering","volume":"20 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jmsg.springeropen.com/counter/pdf/10.1186/s40712-025-00299-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40712-025-00299-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation introduces a novel method for the fabrication of ZnSe thin films on glass substrates through the spin coating technique which employs thiol-amine cosolvents. The thiol-amine co-solvent system efficiently dissolves several metal and metal chalcogenide precursors, facilitating cost-effective, and low-temperature solution-based deposition compatible with flexible substrates. The synthesized ZnSe thin films underwent air annealing at temperatures between 250 and 350 °C, thereby improving their structural and optical characteristics. The polycrystalline nature of ZnSe was elucidated via X-ray diffraction (XRD) analysis, while scanning electron microscopy (SEM) assured the rise of surface smoothness and uniformity with annealing temperature. Energy-dispersive spectroscopy (EDS) analysis indicated near-stoichiometric ZnSe composition, and Fourier-transform infrared (FTIR) spectroscopy identified Zn–Se stretching vibrations in the 960–1120 cm−1 range. The optical data demonstrated high transmittance with an optical bandgap of 3.32–3.85 eV. Furthermore, optical data of ZnSe were embarked for computation of Ge-on-ZnSe waveguide with SiO2 cladding for long-wave infrared (LWIR) light. The waveguide showed a remarkable power confinement factor (PCF) of ~ 0.99 with nearly 1 dB/cm loss at a laser wavelength of 8 μm. These outputs are highly optimistic for the fabrication of solution-processed ZnSe for LWIR photonic integration.