Surrogate model optimization: a comparison case study with pooling problems of CO2 point sources

IF 3.9 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
H.A. Pedrozo , M.A. Zamarripa , A. Uribe-Rodríguez , G. Panagakos , M.S. Diaz , L.T. Biegler
{"title":"Surrogate model optimization: a comparison case study with pooling problems of CO2 point sources","authors":"H.A. Pedrozo ,&nbsp;M.A. Zamarripa ,&nbsp;A. Uribe-Rodríguez ,&nbsp;G. Panagakos ,&nbsp;M.S. Diaz ,&nbsp;L.T. Biegler","doi":"10.1016/j.compchemeng.2025.109199","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we present a benchmark study to leverage the implementation of surrogate models (SMs) within mathematical optimization problems for the integration of carbon capture technologies within an industrial complex, focusing on the pooling of CO₂ streams to enhance efficiency and reduce capture costs. The SMs are built using data from rigorous process simulations in Aspen Plus, with each data point generated by solving equation-oriented optimization problems. We evaluate five different SMs approaches: Automated Learning of Algebraic Models for Optimization (ALAMO), Kriging, Radial Basis Functions (RBFs), Polynomials, and Artificial Neural Networks (ANNs). We assess their accuracy, computational efficiency, and optimization performance.</div><div>In “one-shot” optimization, ALAMO is the most computationally efficient, while Kriging requires the highest CPU time and may struggle with convergence. To improve solution reliability, we incorporate a trust-region filter (TRF) solution strategy. Within this framework, Kriging and ANN achieve the fastest convergence (two iterations), while ALAMO offers a good balance between efficiency and reliability. The RBF SM presents high accuracy on training data; however, it requires more iterations, increasing computational demand.</div></div>","PeriodicalId":286,"journal":{"name":"Computers & Chemical Engineering","volume":"200 ","pages":"Article 109199"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098135425002030","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present a benchmark study to leverage the implementation of surrogate models (SMs) within mathematical optimization problems for the integration of carbon capture technologies within an industrial complex, focusing on the pooling of CO₂ streams to enhance efficiency and reduce capture costs. The SMs are built using data from rigorous process simulations in Aspen Plus, with each data point generated by solving equation-oriented optimization problems. We evaluate five different SMs approaches: Automated Learning of Algebraic Models for Optimization (ALAMO), Kriging, Radial Basis Functions (RBFs), Polynomials, and Artificial Neural Networks (ANNs). We assess their accuracy, computational efficiency, and optimization performance.
In “one-shot” optimization, ALAMO is the most computationally efficient, while Kriging requires the highest CPU time and may struggle with convergence. To improve solution reliability, we incorporate a trust-region filter (TRF) solution strategy. Within this framework, Kriging and ANN achieve the fastest convergence (two iterations), while ALAMO offers a good balance between efficiency and reliability. The RBF SM presents high accuracy on training data; however, it requires more iterations, increasing computational demand.
代理模型优化:与CO2点源池问题的比较案例研究
在这项工作中,我们提出了一项基准研究,利用数学优化问题中的替代模型(SMs)的实施来整合工业园区内的碳捕集技术,重点关注二氧化碳流的汇集,以提高效率并降低捕集成本。SMs是使用Aspen Plus严格的过程模拟数据构建的,每个数据点都是通过求解面向方程的优化问题生成的。我们评估了五种不同的SMs方法:优化代数模型的自动学习(ALAMO),克里格,径向基函数(rbf),多项式和人工神经网络(ann)。我们评估了它们的准确性、计算效率和优化性能。在“一次性”优化中,ALAMO的计算效率最高,而Kriging需要最高的CPU时间,并且可能难以收敛。为了提高解决方案的可靠性,我们引入了一个可信区域过滤器(TRF)解决方案策略。在这个框架内,Kriging和ANN实现了最快的收敛(两次迭代),而ALAMO在效率和可靠性之间提供了很好的平衡。RBF SM对训练数据具有较高的准确率;然而,它需要更多的迭代,增加了计算需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Chemical Engineering
Computers & Chemical Engineering 工程技术-工程:化工
CiteScore
8.70
自引率
14.00%
发文量
374
审稿时长
70 days
期刊介绍: Computers & Chemical Engineering is primarily a journal of record for new developments in the application of computing and systems technology to chemical engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信