Wenjie Zhu , Yanling Yuan , Xuan Guan , Qinglian Xie , Xueli Sun , Zaiquan Dong
{"title":"Gut microbiota-derived extracellular vesicles: Exploring the pathogenesis and treatment of neuropsychiatric disorders","authors":"Wenjie Zhu , Yanling Yuan , Xuan Guan , Qinglian Xie , Xueli Sun , Zaiquan Dong","doi":"10.1016/j.lfs.2025.123750","DOIUrl":null,"url":null,"abstract":"<div><div>The gut microbiome is connected to the pathogenesis of various neuropsychiatric disorders, including cognitive impairment and depression. The gut microbiota can act on the brain through multiple pathways along the gut–brain axis. However, the specific mechanisms are unclear. Bacterial extracellular vesicles (BEVs), bacteria-derived membrane-bound vesicles that can carry a variety of bioactive substances and cross various barriers in the host, are used by bacteria to communicate and interact with the host. Recent studies have shown that BEVs from the gut microbiota are involved in gut-brain communication and may play a role in the pathogenesis and treatment of neuropsychiatric disorders. This review provides an overview of the biogenesis, structure, and function of BEVs and emphasizes their role in the development and treatment of neuropsychiatric disorders.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"376 ","pages":"Article 123750"},"PeriodicalIF":5.2000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525003856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The gut microbiome is connected to the pathogenesis of various neuropsychiatric disorders, including cognitive impairment and depression. The gut microbiota can act on the brain through multiple pathways along the gut–brain axis. However, the specific mechanisms are unclear. Bacterial extracellular vesicles (BEVs), bacteria-derived membrane-bound vesicles that can carry a variety of bioactive substances and cross various barriers in the host, are used by bacteria to communicate and interact with the host. Recent studies have shown that BEVs from the gut microbiota are involved in gut-brain communication and may play a role in the pathogenesis and treatment of neuropsychiatric disorders. This review provides an overview of the biogenesis, structure, and function of BEVs and emphasizes their role in the development and treatment of neuropsychiatric disorders.
期刊介绍:
Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed.
The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.