Enhancing Open-Circuit Voltage in Infrared PbS Quantum Dot Heterojunction Solar Cells Using ZnO Nanowires Passivated by Atomic Layer Deposition of Al2O3

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xiaoxiao Mi, Koichi Tamaki, Takaya Kubo*, Damien Coutancier, Nathanaelle Schneider*, Jean-François Guillemoles, Yoko Wasai, Haruko Tamegai, Saemi Takahashi, Jotaro Nakazaki, Satoshi Uchida and Hiroshi Segawa*, 
{"title":"Enhancing Open-Circuit Voltage in Infrared PbS Quantum Dot Heterojunction Solar Cells Using ZnO Nanowires Passivated by Atomic Layer Deposition of Al2O3","authors":"Xiaoxiao Mi,&nbsp;Koichi Tamaki,&nbsp;Takaya Kubo*,&nbsp;Damien Coutancier,&nbsp;Nathanaelle Schneider*,&nbsp;Jean-François Guillemoles,&nbsp;Yoko Wasai,&nbsp;Haruko Tamegai,&nbsp;Saemi Takahashi,&nbsp;Jotaro Nakazaki,&nbsp;Satoshi Uchida and Hiroshi Segawa*,&nbsp;","doi":"10.1021/acsaem.4c0331610.1021/acsaem.4c03316","DOIUrl":null,"url":null,"abstract":"<p >PbS colloidal quantum dot (CQD)-based solar cells hold promise for solution-processed solar cells with wideband spectral sensitivity from the visible to the infrared region. In particular, an approximately one micrometer thick nanocomposite structure composed of the densely and intricately mixed infrared-absorbing PbS QDs and ZnO nanowires (NWs) effectively enhances the external quantum efficiency of photocurrent from the visible to the infrared spectrum because of the formation of spatially separate carrier pathways. This enlarged heterointerface makes the nanocomposite structure a promising candidate for a solar cell structure for high-efficiency infrared photovoltaics. However, since the recombination reaction mainly occurs at the heterojunction, improving open-circuit voltage (<i>V</i><sub>oc</sub>) is a critical challenge to fully capitalize on the performance of a nanocomposite with the enlarged heterojunction interface. To address this, we utilized the atomic layer deposition (ALD) technique to passivate the surface defects of ZnO NWs with Al<sub>2</sub>O<sub>3</sub>. A detailed analysis using high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that a precisely controlled ALD process enables the deposition of the conformal Al<sub>2</sub>O<sub>3</sub> layer with the target thickness (3 nm) uniformly across the surfaces of ZnO NWs within the nanocomposite. Moreover, incorporating infrared-absorbing PbS quantum dots into the nanocomposite structure led to an increase in open-circuit voltage without compromising the short-circuit current density.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"8 10","pages":"6308–6319 6308–6319"},"PeriodicalIF":5.4000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c03316","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

PbS colloidal quantum dot (CQD)-based solar cells hold promise for solution-processed solar cells with wideband spectral sensitivity from the visible to the infrared region. In particular, an approximately one micrometer thick nanocomposite structure composed of the densely and intricately mixed infrared-absorbing PbS QDs and ZnO nanowires (NWs) effectively enhances the external quantum efficiency of photocurrent from the visible to the infrared spectrum because of the formation of spatially separate carrier pathways. This enlarged heterointerface makes the nanocomposite structure a promising candidate for a solar cell structure for high-efficiency infrared photovoltaics. However, since the recombination reaction mainly occurs at the heterojunction, improving open-circuit voltage (Voc) is a critical challenge to fully capitalize on the performance of a nanocomposite with the enlarged heterojunction interface. To address this, we utilized the atomic layer deposition (ALD) technique to passivate the surface defects of ZnO NWs with Al2O3. A detailed analysis using high-resolution transmission electron microscopy (HR-TEM), scanning transmission electron microscopy (STEM), and energy-dispersive X-ray spectroscopy (EDS) confirmed that a precisely controlled ALD process enables the deposition of the conformal Al2O3 layer with the target thickness (3 nm) uniformly across the surfaces of ZnO NWs within the nanocomposite. Moreover, incorporating infrared-absorbing PbS quantum dots into the nanocomposite structure led to an increase in open-circuit voltage without compromising the short-circuit current density.

Al2O3原子层钝化ZnO纳米线提高红外PbS量子点异质结太阳能电池开路电压
基于PbS胶体量子点(CQD)的太阳能电池有望成为具有从可见光到红外波段宽带光谱灵敏度的溶液处理太阳能电池。特别是,由密集而复杂的混合红外吸收PbS量子点和ZnO纳米线(NWs)组成的约1微米厚的纳米复合结构,由于形成了空间分离的载流子通道,有效地提高了可见光到红外光谱光电流的外量子效率。这种扩大的异质界面使纳米复合材料结构成为高效红外光伏太阳能电池结构的有希望的候选者。然而,由于复合反应主要发生在异质结处,因此提高开路电压(Voc)是充分利用具有扩大异质结界面的纳米复合材料性能的关键挑战。为了解决这个问题,我们利用原子层沉积(ALD)技术用Al2O3钝化ZnO NWs的表面缺陷。利用高分辨率透射电子显微镜(HR-TEM)、扫描透射电子显微镜(STEM)和能量色散x射线能谱(EDS)进行的详细分析证实,精确控制的ALD过程可以在纳米复合材料的ZnO NWs表面均匀沉积目标厚度为3 nm的共形Al2O3层。此外,在纳米复合材料结构中加入红外吸收PbS量子点可以在不影响短路电流密度的情况下增加开路电压。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信