Probabilistic photonic computing for AI.

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Nature computational science Pub Date : 2025-05-01 Epub Date: 2025-05-23 DOI:10.1038/s43588-025-00800-1
Frank Brückerhoff-Plückelmann, Anna P Ovvyan, Akhil Varri, Hendrik Borras, Bernhard Klein, Lennart Meyer, C David Wright, Harish Bhaskaran, Ghazi Sarwat Syed, Abu Sebastian, Holger Fröning, Wolfram Pernice
{"title":"Probabilistic photonic computing for AI.","authors":"Frank Brückerhoff-Plückelmann, Anna P Ovvyan, Akhil Varri, Hendrik Borras, Bernhard Klein, Lennart Meyer, C David Wright, Harish Bhaskaran, Ghazi Sarwat Syed, Abu Sebastian, Holger Fröning, Wolfram Pernice","doi":"10.1038/s43588-025-00800-1","DOIUrl":null,"url":null,"abstract":"<p><p>Probabilistic computing excels in approximating combinatorial problems and modeling uncertainty. However, using conventional deterministic hardware for probabilistic models is challenging: (pseudo) random number generation introduces computational overhead and additional data shuffling. Therefore, there is a pressing need for different probabilistic computing architectures that achieve low latencies with reasonable energy consumption. Physical computing offers a promising solution, as these systems do not rely on an abstract deterministic representation of data but directly encode the information in physical quantities, enabling inherent probabilistic architectures utilizing entropy sources. Photonic computing is a prominent variant of physical computing due to the large available bandwidth, several orthogonal degrees of freedom for data encoding and optimal properties for in-memory computing and parallel data transfer. Here, we highlight key developments in physical photonic computing and photonic random number generation. We further provide insights into the realization of probabilistic photonic processors and their impact on artificial intelligence systems and future challenges.</p>","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":" ","pages":"377-387"},"PeriodicalIF":12.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43588-025-00800-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Probabilistic computing excels in approximating combinatorial problems and modeling uncertainty. However, using conventional deterministic hardware for probabilistic models is challenging: (pseudo) random number generation introduces computational overhead and additional data shuffling. Therefore, there is a pressing need for different probabilistic computing architectures that achieve low latencies with reasonable energy consumption. Physical computing offers a promising solution, as these systems do not rely on an abstract deterministic representation of data but directly encode the information in physical quantities, enabling inherent probabilistic architectures utilizing entropy sources. Photonic computing is a prominent variant of physical computing due to the large available bandwidth, several orthogonal degrees of freedom for data encoding and optimal properties for in-memory computing and parallel data transfer. Here, we highlight key developments in physical photonic computing and photonic random number generation. We further provide insights into the realization of probabilistic photonic processors and their impact on artificial intelligence systems and future challenges.

人工智能的概率光子计算。
概率计算擅长于逼近组合问题和不确定性建模。然而,在概率模型中使用传统的确定性硬件是具有挑战性的:(伪)随机数生成引入了计算开销和额外的数据变换。因此,迫切需要不同的概率计算架构,以实现低延迟和合理的能耗。物理计算提供了一个很有前途的解决方案,因为这些系统不依赖于数据的抽象确定性表示,而是直接以物理量对信息进行编码,从而利用熵源实现固有的概率架构。光子计算是物理计算的一个重要变体,因为它具有大的可用带宽、数据编码的几个正交自由度以及内存计算和并行数据传输的最佳特性。在这里,我们强调了物理光子计算和光子随机数生成的关键发展。我们进一步提供了对概率光子处理器的实现及其对人工智能系统和未来挑战的影响的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信