Into the Void: Mapping the Unseen Gaps in High Dimensional Data.

Xinyu Zhang, Tyler Estro, Geoff Kuenning, Erez Zadok, Klaus Mueller
{"title":"Into the Void: Mapping the Unseen Gaps in High Dimensional Data.","authors":"Xinyu Zhang, Tyler Estro, Geoff Kuenning, Erez Zadok, Klaus Mueller","doi":"10.1109/TVCG.2025.3572850","DOIUrl":null,"url":null,"abstract":"<p><p>We present a comprehensive pipeline, integrated with a visual analytics system called GapMiner, capable of exploring and exploiting untapped opportunities within the empty regions of high-dimensional datasets. Our approach utilizes a novel Empty-Space Search Algorithm (ESA) to identify the center points of these uncharted voids, which represent reservoirs for potentially valuable new configurations. Initially, this process is guided by user interactions through GapMiner, which visualizes Empty-Space Configurations (ESCs) within the context of the dataset and allows domain experts to explore and refine ESCs for subsequent validation in domain experiments or simulations. These activities iteratively enhance the dataset and contribute to training a connected deep neural network (DNN). As training progresses, the DNN gradually assumes the role of identifying and validating high-potential ESCs, reducing the need for direct user involvement. Once the DNN achieves sufficient accuracy, it autonomously guides the exploration of optimal configurations by predicting performance and refining configurations through a combination of gradient ascent and improved empty-space searches. Domain experts were actively involved throughout the system's development. Our findings demonstrate that this methodology consistently generates superior novel configurations compared to conventional randomization-based approaches. We illustrate its effectiveness in multiple case studies with diverse objectives.</p>","PeriodicalId":94035,"journal":{"name":"IEEE transactions on visualization and computer graphics","volume":"PP ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on visualization and computer graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TVCG.2025.3572850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a comprehensive pipeline, integrated with a visual analytics system called GapMiner, capable of exploring and exploiting untapped opportunities within the empty regions of high-dimensional datasets. Our approach utilizes a novel Empty-Space Search Algorithm (ESA) to identify the center points of these uncharted voids, which represent reservoirs for potentially valuable new configurations. Initially, this process is guided by user interactions through GapMiner, which visualizes Empty-Space Configurations (ESCs) within the context of the dataset and allows domain experts to explore and refine ESCs for subsequent validation in domain experiments or simulations. These activities iteratively enhance the dataset and contribute to training a connected deep neural network (DNN). As training progresses, the DNN gradually assumes the role of identifying and validating high-potential ESCs, reducing the need for direct user involvement. Once the DNN achieves sufficient accuracy, it autonomously guides the exploration of optimal configurations by predicting performance and refining configurations through a combination of gradient ascent and improved empty-space searches. Domain experts were actively involved throughout the system's development. Our findings demonstrate that this methodology consistently generates superior novel configurations compared to conventional randomization-based approaches. We illustrate its effectiveness in multiple case studies with diverse objectives.

进入虚空:映射高维数据中看不见的空隙。
我们提供了一个全面的管道,集成了一个名为GapMiner的可视化分析系统,能够在高维数据集的空白区域中探索和利用未开发的机会。我们的方法利用一种新颖的空空间搜索算法(ESA)来识别这些未知空洞的中心点,这些空洞代表了潜在有价值的新配置的储层。最初,该过程由用户通过GapMiner进行交互指导,GapMiner在数据集上下文中可视化空空间配置(esc),并允许领域专家探索和完善esc,以便在领域实验或模拟中进行后续验证。这些活动迭代地增强了数据集,并有助于训练连接的深度神经网络(DNN)。随着训练的进展,深度神经网络逐渐承担起识别和验证高潜力ESCs的作用,减少了直接用户参与的需要。一旦深度神经网络达到足够的精度,它就会通过预测性能并通过梯度上升和改进的空空间搜索的组合来优化配置,从而自主引导对最佳配置的探索。领域专家在整个系统开发过程中积极参与。我们的研究结果表明,与传统的基于随机化的方法相比,这种方法始终产生优越的新配置。我们通过不同目标的多个案例研究来说明其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信