TRENDY: gene regulatory network inference enhanced by transformer.

Xueying Tian, Yash Patel, Yue Wang
{"title":"TRENDY: gene regulatory network inference enhanced by transformer.","authors":"Xueying Tian, Yash Patel, Yue Wang","doi":"10.1093/bioinformatics/btaf314","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Gene regulatory networks (GRNs) play a crucial role in the control of cellular functions. Numerous methods have been developed to infer GRNs from gene expression data, including mechanism-based approaches, information-based approaches, and more recent deep learning techniques, the last of which often overlook the underlying gene expression mechanisms.</p><p><strong>Results: </strong>In this work, we introduce TRENDY, a novel GRN inference method that integrates transformer models to enhance the mechanism-based WENDY approach. Through testing on both simulated and experimental datasets, TRENDY demonstrates superior performance compared to existing methods. Furthermore, we apply this transformer-based approach to three additional inference methods, showcasing its broad potential to enhance GRN inference.</p><p><strong>Availability and implementation: </strong>Code and data files are available at https://github.com/YueWangMathbio/TRENDY, with DOI: 10.6084/m9.figshare.28236074.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Gene regulatory networks (GRNs) play a crucial role in the control of cellular functions. Numerous methods have been developed to infer GRNs from gene expression data, including mechanism-based approaches, information-based approaches, and more recent deep learning techniques, the last of which often overlook the underlying gene expression mechanisms.

Results: In this work, we introduce TRENDY, a novel GRN inference method that integrates transformer models to enhance the mechanism-based WENDY approach. Through testing on both simulated and experimental datasets, TRENDY demonstrates superior performance compared to existing methods. Furthermore, we apply this transformer-based approach to three additional inference methods, showcasing its broad potential to enhance GRN inference.

Availability and implementation: Code and data files are available at https://github.com/YueWangMathbio/TRENDY, with DOI: 10.6084/m9.figshare.28236074.

最新进展:基因调控网络推断被变压器增强。
动机:基因调控网络(Gene regulatory networks, GRNs)在细胞功能的调控中起着至关重要的作用。已经开发了许多方法来从基因表达数据中推断grn,包括基于机制的方法,基于信息的方法和最近的深度学习技术,其中最后一种方法经常忽略潜在的基因表达机制。结果:在这项工作中,我们引入了一种新的GRN推理方法,该方法集成了变压器模型,以增强基于机制的WENDY方法。通过对模拟和实验数据集的测试,与现有方法相比,赫基德展示了优越的性能。此外,我们将这种基于变压器的方法应用于另外三种推理方法,展示了其增强GRN推理的广泛潜力。可用性和实现:代码和数据文件可从https://github.com/YueWangMathbio/TRENDY获得,DOI: 10.6084/m9.figshare.28236074。补充资料:补充资料可在生物信息学网上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信