Bernardo Junqueira de Moraes Arnoso , Caroline Alves de Araújo , Giovana Dias Ramundo , Graziele Freitas de Bem , Dayane Teixeira Ognibene , Fabricia Lima Fontes-Dantas , Bruna Cadete Martins , Julio Beltrame Daleprane , Melina Oliveira de Souza , Angela Castro Resende , Cristiane Aguiar da Costa
{"title":"Açaí seed extract mitigates intestinal and hypothalamic alterations in obese mice","authors":"Bernardo Junqueira de Moraes Arnoso , Caroline Alves de Araújo , Giovana Dias Ramundo , Graziele Freitas de Bem , Dayane Teixeira Ognibene , Fabricia Lima Fontes-Dantas , Bruna Cadete Martins , Julio Beltrame Daleprane , Melina Oliveira de Souza , Angela Castro Resende , Cristiane Aguiar da Costa","doi":"10.1016/j.mce.2025.112574","DOIUrl":null,"url":null,"abstract":"<div><div>Obesity is a significant health concern, significantly contributing to increased morbidity and mortality by disrupting multiple physiological systems. It is strongly associated with metabolic dysfunctions, including impaired glycemic homeostasis, compromised intestinal barrier integrity, and gut microbiota imbalances, all exacerbating the risk of chronic diseases. The hydroalcoholic extract of açaí seeds (ASE), rich in phenolic compounds, has demonstrated beneficial effects on obesity and hyperglycemia; however, its impacts on gut health and gut-hypothalamus communication remain unclear. This study aimed to investigate the therapeutic effect of ASE in intestinal and hypothalamic alterations associated with obesity and compare it with Metformin. Male C57BL/6 mice were fed a high-fat or standard diet for 14 weeks. The ASE (300 mg/kg/day) and Metformin (300 mg/kg/day) treatments started in the tenth week until the fourteenth week, totaling four weeks of treatment. Our data show that the treatment with ASE and Metformin reduced body weight, ameliorated lipid profile, hyperglycemia, and plasma hyperleptinemia, and decreased the oxidative damage in the gut by reducing immunostaining of 8-isoprostane and NOX-4 expression, and improved the intestinal parameters and hypothalamic gene expression. Obesity-induced dysbiosis in the HF group was marked by reduced Proteobacteria and elevated LPS plasma levels, which were improved by treatments with ASE and Metformin. These findings suggest that ASE and Metformin are promising strategies to counteract the adverse effects of obesity on intestinal health and gut-hypothalamus communication, though they act through distinct mechanisms. Therefore, we can suggest that ASE is a promising natural product for treating the intestinal alterations associated with obesity.</div></div>","PeriodicalId":18707,"journal":{"name":"Molecular and Cellular Endocrinology","volume":"606 ","pages":"Article 112574"},"PeriodicalIF":3.8000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030372072500125X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Obesity is a significant health concern, significantly contributing to increased morbidity and mortality by disrupting multiple physiological systems. It is strongly associated with metabolic dysfunctions, including impaired glycemic homeostasis, compromised intestinal barrier integrity, and gut microbiota imbalances, all exacerbating the risk of chronic diseases. The hydroalcoholic extract of açaí seeds (ASE), rich in phenolic compounds, has demonstrated beneficial effects on obesity and hyperglycemia; however, its impacts on gut health and gut-hypothalamus communication remain unclear. This study aimed to investigate the therapeutic effect of ASE in intestinal and hypothalamic alterations associated with obesity and compare it with Metformin. Male C57BL/6 mice were fed a high-fat or standard diet for 14 weeks. The ASE (300 mg/kg/day) and Metformin (300 mg/kg/day) treatments started in the tenth week until the fourteenth week, totaling four weeks of treatment. Our data show that the treatment with ASE and Metformin reduced body weight, ameliorated lipid profile, hyperglycemia, and plasma hyperleptinemia, and decreased the oxidative damage in the gut by reducing immunostaining of 8-isoprostane and NOX-4 expression, and improved the intestinal parameters and hypothalamic gene expression. Obesity-induced dysbiosis in the HF group was marked by reduced Proteobacteria and elevated LPS plasma levels, which were improved by treatments with ASE and Metformin. These findings suggest that ASE and Metformin are promising strategies to counteract the adverse effects of obesity on intestinal health and gut-hypothalamus communication, though they act through distinct mechanisms. Therefore, we can suggest that ASE is a promising natural product for treating the intestinal alterations associated with obesity.
期刊介绍:
Molecular and Cellular Endocrinology was established in 1974 to meet the demand for integrated publication on all aspects related to the genetic and biochemical effects, synthesis and secretions of extracellular signals (hormones, neurotransmitters, etc.) and to the understanding of cellular regulatory mechanisms involved in hormonal control.