{"title":"Comparison of Breath Biomarker Studies for Early Diagnosis of Chronic Kidney Disease: A Review.","authors":"Yang Wang, Huachun Weng, Dongpo Xu, Suhua Zhang","doi":"10.1088/1752-7163/addc8a","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic kidney disease (CKD) is a long-term progressive disease. The key to treatment lies in early diagnosis and timely intervention. How to achieve early diagnosis of CKD has always been an important challenge. Exhaled breath sample analysis, as an emerging method, has attracted much attention due to its non-invasiveness and the convenience of sample collection. Compared with the complex traditional detection methods, it is more suitable for large-scale screening. The main purpose of this review is to extensively collect relevant literature on the research of exhaled breath biomarkers for CKD, summarize the potential biomarkers discovered in these studies, and compare the similarities and differences. Through in-depth analysis of the causes of these differences and commonalities, this review aims to explore whether these potential exhaled breath biomarkers could serve as reliable indicators for the early diagnosis of CKD.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/addc8a","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic kidney disease (CKD) is a long-term progressive disease. The key to treatment lies in early diagnosis and timely intervention. How to achieve early diagnosis of CKD has always been an important challenge. Exhaled breath sample analysis, as an emerging method, has attracted much attention due to its non-invasiveness and the convenience of sample collection. Compared with the complex traditional detection methods, it is more suitable for large-scale screening. The main purpose of this review is to extensively collect relevant literature on the research of exhaled breath biomarkers for CKD, summarize the potential biomarkers discovered in these studies, and compare the similarities and differences. Through in-depth analysis of the causes of these differences and commonalities, this review aims to explore whether these potential exhaled breath biomarkers could serve as reliable indicators for the early diagnosis of CKD.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.