Clavia Ruth Wooton-Kee, Hari K Yalamanchili, Islam Mohamed, Manal Hassan, Kenneth D R Setchell, Monica Narvaez Rivas, Ayse K Coskun, Vasanta Putluri, Nagireddy Putluri, Prasun Jalal, Michael L Schilsky, David D Moore
{"title":"Changes in the FXR-cistrome and alterations in bile acid physiology in Wilson disease.","authors":"Clavia Ruth Wooton-Kee, Hari K Yalamanchili, Islam Mohamed, Manal Hassan, Kenneth D R Setchell, Monica Narvaez Rivas, Ayse K Coskun, Vasanta Putluri, Nagireddy Putluri, Prasun Jalal, Michael L Schilsky, David D Moore","doi":"10.1097/HC9.0000000000000707","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Wilson disease (WD) is an autosomal recessive disorder that results in excessive hepatic copper, causing hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver failure. Previous studies have revealed dysregulation of many farnesoid X receptor (FXR) metabolic target genes in WD, including the bile salt exporter pump, the major determinant of bile flow.</p><p><strong>Methods: </strong>We tested the hypothesis that the FXR-cistrome is decreased in Atp7b-/- mice in accord with dysregulated bile acid homeostasis.</p><p><strong>Results: </strong>FXR binding within Atp7b-/- mouse livers displayed surprising complexity: FXR binding was increased in distal intergenic regions but decreased in promoter regions in Atp7b-/- versus wild-type mice. Decreased FXR occupancy in Atp7b-/- versus wild-type mice was observed in hepatocyte metabolic and bile acid homeostasis pathways, while enrichment of FXR binding was observed in pathways associated with cellular damage outside of hepatocytes. Indeed, disparate FXR occupancy was identified in parenchymal and non-parenchymal marker genes in a manner that suggests decreased FXR activity in parenchymal cells, as expected, and increased FXR activity in non-parenchymal cells. Consistent with altered FXR function, serum and liver bile acid concentrations were higher in Atp7b-/- mice than in wild-type mice. Comparison of bile acid profiles in the serum of WD patients with \"liver,\" \"neurological,\" or \"mixed\" disease versus healthy controls also revealed increases in specific bile acids in WD-liver versus healthy controls.</p><p><strong>Conclusions: </strong>We identified novel FXR-occupancy across the genome that varied in parenchymal and non-parenchymal cells, demonstrating complex FXR regulation of metabolic and hepatocellular stress pathways in Atp7b-/- mice. Dynamic changes in FXR activity support our novel finding of altered bile acid metabolism in Atp7b-/- mice and WD patients.</p>","PeriodicalId":12978,"journal":{"name":"Hepatology Communications","volume":"9 6","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12106221/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hepatology Communications","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/HC9.0000000000000707","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Wilson disease (WD) is an autosomal recessive disorder that results in excessive hepatic copper, causing hepatic steatosis, inflammation, fibrosis, cirrhosis, and liver failure. Previous studies have revealed dysregulation of many farnesoid X receptor (FXR) metabolic target genes in WD, including the bile salt exporter pump, the major determinant of bile flow.
Methods: We tested the hypothesis that the FXR-cistrome is decreased in Atp7b-/- mice in accord with dysregulated bile acid homeostasis.
Results: FXR binding within Atp7b-/- mouse livers displayed surprising complexity: FXR binding was increased in distal intergenic regions but decreased in promoter regions in Atp7b-/- versus wild-type mice. Decreased FXR occupancy in Atp7b-/- versus wild-type mice was observed in hepatocyte metabolic and bile acid homeostasis pathways, while enrichment of FXR binding was observed in pathways associated with cellular damage outside of hepatocytes. Indeed, disparate FXR occupancy was identified in parenchymal and non-parenchymal marker genes in a manner that suggests decreased FXR activity in parenchymal cells, as expected, and increased FXR activity in non-parenchymal cells. Consistent with altered FXR function, serum and liver bile acid concentrations were higher in Atp7b-/- mice than in wild-type mice. Comparison of bile acid profiles in the serum of WD patients with "liver," "neurological," or "mixed" disease versus healthy controls also revealed increases in specific bile acids in WD-liver versus healthy controls.
Conclusions: We identified novel FXR-occupancy across the genome that varied in parenchymal and non-parenchymal cells, demonstrating complex FXR regulation of metabolic and hepatocellular stress pathways in Atp7b-/- mice. Dynamic changes in FXR activity support our novel finding of altered bile acid metabolism in Atp7b-/- mice and WD patients.
期刊介绍:
Hepatology Communications is a peer-reviewed, online-only, open access journal for fast dissemination of high quality basic, translational, and clinical research in hepatology. Hepatology Communications maintains high standard and rigorous peer review. Because of its open access nature, authors retain the copyright to their works, all articles are immediately available and free to read and share, and it is fully compliant with funder and institutional mandates. The journal is committed to fast publication and author satisfaction.