Paricalcitol plus hydroxychloroquine enhances gemcitabine activity and induces mesenchymal to epithelial transition in pancreatic ductal adenocarcinoma: A single cell RNA-seq analysis
Ganji Purnachandra Nagaraju , Madhu Sudhana Saddala , Sujith Sarvesh , Dhana Sekhar Reddy Bandi , Ateeq M. Khaliq , Ashiq Masood , Mehmet Akce , Bassel F. El-Rayes
{"title":"Paricalcitol plus hydroxychloroquine enhances gemcitabine activity and induces mesenchymal to epithelial transition in pancreatic ductal adenocarcinoma: A single cell RNA-seq analysis","authors":"Ganji Purnachandra Nagaraju , Madhu Sudhana Saddala , Sujith Sarvesh , Dhana Sekhar Reddy Bandi , Ateeq M. Khaliq , Ashiq Masood , Mehmet Akce , Bassel F. El-Rayes","doi":"10.1016/j.canlet.2025.217809","DOIUrl":null,"url":null,"abstract":"<div><div>Epithelial-mesenchymal transition (EMT) describes a process by which epithelial cells acquire mesenchymal properties associated with increased migration, invasion, and resistance to therapy. In pancreatic ductal adenocarcinoma (PDAC), targeting the molecular and intercellular communication pathways that drive EMT represents a promising therapeutic strategy. Here, we investigate the effects of combined treatment with gemcitabine (G), paricalcitol (P), and hydroxychloroquine (GPH) in KPC-Luc orthotopic mouse models of PDAC, using single-cell RNA sequencing (scRNA-seq), high-dimensional weighted gene co-expression network analysis (hdWGCNA), and cell-cell communication analysis. GPH treatment reduces EMT, which is associated with the downregulation of the essential gene fibronectin (<em>Fn1)</em>. Collagen and Fn1 pathways co-expression decreases in GPH-treated KPC-Luc tumors. Cancer-associated fibroblasts (CAFs) appear dominant in collagen signaling, whereas macrophages mediate Fn1 signaling. GPH treatment reduces the expression interaction strength between ligands and receptors (collagen-integrin and <em>Fn1-Cd44</em> or <em>Fn1-Sdc4</em>) compared to sham, PH, and G. Altogether, this study presents a comprehensive single-cell resolution map of the molecular and cellular mechanisms by which GPH treatment impairs EMT in PDAC, identifying potential therapeutic targets within the fibronectin and collagen signaling axes.</div></div>","PeriodicalId":9506,"journal":{"name":"Cancer letters","volume":"625 ","pages":"Article 217809"},"PeriodicalIF":9.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer letters","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304383525003763","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Epithelial-mesenchymal transition (EMT) describes a process by which epithelial cells acquire mesenchymal properties associated with increased migration, invasion, and resistance to therapy. In pancreatic ductal adenocarcinoma (PDAC), targeting the molecular and intercellular communication pathways that drive EMT represents a promising therapeutic strategy. Here, we investigate the effects of combined treatment with gemcitabine (G), paricalcitol (P), and hydroxychloroquine (GPH) in KPC-Luc orthotopic mouse models of PDAC, using single-cell RNA sequencing (scRNA-seq), high-dimensional weighted gene co-expression network analysis (hdWGCNA), and cell-cell communication analysis. GPH treatment reduces EMT, which is associated with the downregulation of the essential gene fibronectin (Fn1). Collagen and Fn1 pathways co-expression decreases in GPH-treated KPC-Luc tumors. Cancer-associated fibroblasts (CAFs) appear dominant in collagen signaling, whereas macrophages mediate Fn1 signaling. GPH treatment reduces the expression interaction strength between ligands and receptors (collagen-integrin and Fn1-Cd44 or Fn1-Sdc4) compared to sham, PH, and G. Altogether, this study presents a comprehensive single-cell resolution map of the molecular and cellular mechanisms by which GPH treatment impairs EMT in PDAC, identifying potential therapeutic targets within the fibronectin and collagen signaling axes.
期刊介绍:
Cancer Letters is a reputable international journal that serves as a platform for significant and original contributions in cancer research. The journal welcomes both full-length articles and Mini Reviews in the wide-ranging field of basic and translational oncology. Furthermore, it frequently presents Special Issues that shed light on current and topical areas in cancer research.
Cancer Letters is highly interested in various fundamental aspects that can cater to a diverse readership. These areas include the molecular genetics and cell biology of cancer, radiation biology, molecular pathology, hormones and cancer, viral oncology, metastasis, and chemoprevention. The journal actively focuses on experimental therapeutics, particularly the advancement of targeted therapies for personalized cancer medicine, such as metronomic chemotherapy.
By publishing groundbreaking research and promoting advancements in cancer treatments, Cancer Letters aims to actively contribute to the fight against cancer and the improvement of patient outcomes.