Zhi Yang, Yizheng Yao, Xi Chen, Victoria Madigan, Shanrui Pu, Xianqun Fan, Jun Pu, Fengfeng Bei
{"title":"Cross-species tropism of AAV.CPP.16 in the respiratory tract and its gene therapies against pulmonary fibrosis and viral infection.","authors":"Zhi Yang, Yizheng Yao, Xi Chen, Victoria Madigan, Shanrui Pu, Xianqun Fan, Jun Pu, Fengfeng Bei","doi":"10.1016/j.xcrm.2025.102144","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient gene delivery vectors are crucial for respiratory and lung disease therapies. We report that AAV.CPP.16, an engineered adeno-associated virus (AAV) variant derived from AAV9, efficiently transduces airway and lung cells in mice and non-human primates via intranasal administration. AAV.CPP.16 outperforms AAV6 and AAV9, two wild-type AAVs with demonstrated tropism for respiratory tissues, and efficiently targets key respiratory cell types. It supports gene supplementation and editing therapies in two clinically relevant mouse models of respiratory and lung diseases. A single intranasal dose of AAV.CPP.16 expressing a dual-target, vascular endothelial growth factor (VEGF)/transforming growth factor (TGF)-β1-neutralizing protein protected lungs from idiopathic pulmonary fibrosis, while a similar application of AAV.CPP.16 carrying an \"all-in-one\" CRISPR-Cas13d system inhibited transcription of the SARS-CoV-2-derived RNA-dependent RNA polymerase (Rdrp) gene. Our findings highlight AAV.CPP.16 as a promising vector for respiratory and lung gene therapy.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"102144"},"PeriodicalIF":10.6000,"publicationDate":"2025-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12208343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2025.102144","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/5/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient gene delivery vectors are crucial for respiratory and lung disease therapies. We report that AAV.CPP.16, an engineered adeno-associated virus (AAV) variant derived from AAV9, efficiently transduces airway and lung cells in mice and non-human primates via intranasal administration. AAV.CPP.16 outperforms AAV6 and AAV9, two wild-type AAVs with demonstrated tropism for respiratory tissues, and efficiently targets key respiratory cell types. It supports gene supplementation and editing therapies in two clinically relevant mouse models of respiratory and lung diseases. A single intranasal dose of AAV.CPP.16 expressing a dual-target, vascular endothelial growth factor (VEGF)/transforming growth factor (TGF)-β1-neutralizing protein protected lungs from idiopathic pulmonary fibrosis, while a similar application of AAV.CPP.16 carrying an "all-in-one" CRISPR-Cas13d system inhibited transcription of the SARS-CoV-2-derived RNA-dependent RNA polymerase (Rdrp) gene. Our findings highlight AAV.CPP.16 as a promising vector for respiratory and lung gene therapy.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.