Annihilator conditions and generalized derivations in prime rings

Q2 Mathematics
B. Dhara, S. Kar, S. Ghosh
{"title":"Annihilator conditions and generalized derivations in prime rings","authors":"B. Dhara,&nbsp;S. Kar,&nbsp;S. Ghosh","doi":"10.1007/s11565-025-00597-x","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>R</i> be a prime ring with char <span>\\((R)\\ne 2\\)</span>, <i>I</i> be a nonzero ideal of <i>R</i>, <span>\\(f(x_1,\\ldots ,x_n)\\)</span> be a noncentral multilinear polynomial over extended centroid <i>C</i> and <span>\\(0\\ne b'\\in R\\)</span>. Denote <span>\\(f(I)=\\{f(t_1,\\ldots ,t_n) | t_1,\\ldots ,t_n\\in I\\}\\)</span>. Suppose that <i>F</i>, <i>G</i> and <i>H</i> are three generalized derivations on <i>R</i> such that </p><div><div><span>$$\\begin{aligned} b'\\Big \\{F\\Big (G(V)V\\Big )-H(V^2)\\Big \\}=0 \\end{aligned}$$</span></div></div><p>for all <span>\\(V\\in f(I)\\)</span>. Then the structure of the maps <i>F</i>, <i>G</i>, <i>H</i> are described. This result naturally generalizes the results obtained by Carini and De Filippis in [Siberian Math. J. 53 (6) (2012), 1051-1060], Dhara and Argac in [Commun. Math. Stat. 4 (2016), 39-54] and completes the incomplete result of Tiwari in [Rend. Circ. Mat. Palermo, II. Ser 71 (2022), 207-223]. At the end of this paper an example is given to show that the primeness condition is not superfluous.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00597-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be a prime ring with char \((R)\ne 2\), I be a nonzero ideal of R, \(f(x_1,\ldots ,x_n)\) be a noncentral multilinear polynomial over extended centroid C and \(0\ne b'\in R\). Denote \(f(I)=\{f(t_1,\ldots ,t_n) | t_1,\ldots ,t_n\in I\}\). Suppose that F, G and H are three generalized derivations on R such that

$$\begin{aligned} b'\Big \{F\Big (G(V)V\Big )-H(V^2)\Big \}=0 \end{aligned}$$

for all \(V\in f(I)\). Then the structure of the maps FGH are described. This result naturally generalizes the results obtained by Carini and De Filippis in [Siberian Math. J. 53 (6) (2012), 1051-1060], Dhara and Argac in [Commun. Math. Stat. 4 (2016), 39-54] and completes the incomplete result of Tiwari in [Rend. Circ. Mat. Palermo, II. Ser 71 (2022), 207-223]. At the end of this paper an example is given to show that the primeness condition is not superfluous.

素环上的湮灭子条件和广义导数
设R是带字符\((R)\ne 2\)的素环,I是R的非零理想,\(f(x_1,\ldots ,x_n)\)是扩展质心C和\(0\ne b'\in R\)上的非中心多线性多项式。表示\(f(I)=\{f(t_1,\ldots ,t_n) | t_1,\ldots ,t_n\in I\}\)。假设F, G和H是R的三个广义导数,使得$$\begin{aligned} b'\Big \{F\Big (G(V)V\Big )-H(V^2)\Big \}=0 \end{aligned}$$对于所有\(V\in f(I)\)。然后描述了映射F、G、H的结构。这个结果很自然地推广了卡里尼和德菲利皮斯在《西伯利亚数学》中得到的结果。[j] . [j] . 53 (6) (2012), 1051-1060 .]数学。统计,4(2016),39-54],完成了[Rend]中Tiwari的不完全结果。约马特。巴勒莫,二。[j].科学通报71(2022),207-223。最后给出了一个算例,说明素数条件不是多余的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信