{"title":"Multiscale Spatial-Spectral CNN-Transformer Network for Hyperspectral Image Super-Resolution","authors":"Jiayang Zhang;Hongjia Qu;Junhao Jia;Yaowei Li;Bo Jiang;Xiaoxuan Chen;Jinye Peng","doi":"10.1109/JSTARS.2025.3565840","DOIUrl":null,"url":null,"abstract":"Remarkable strides have been made in super-resolution methods based on deep learning for hyperspectral images (HSIs), which are capable of enhancing the spatial resolution. However, these methods predominantly focus on capturing local features using convolutional neural networks (CNNs), neglecting the comprehensive utilization of global spatial-spectral information. To address this limitation, we innovatively propose a multiscale spatial-spectral CNN-transformer network for hyperspectral image super resolution, namely, MSHSR. MSHSR not only applies the local spatial-spectral characteristics but also innovatively facilitates the collaborative exploration and application of spatial details and spectral data globally. Specifically, we first design a multiscale spatial-spectral fusion module, which integrates dilated-convolution parallel branches and a hybrid spectral attention mechanism to address the strong local correlations in HSIs, effectively capturing and fusing multiscale local spatial-spectral information. Furthermore, in order to fully exploit the global contextual consistency in HSIs, we introduce a sparse spectral transformer module. This module processes the previously obtained local spatial-spectral features, thoroughly exploring the elaborate global interrelationship and long-range dependencies among different spectral bands through a coarse-to-fine strategy. Extensive experimental results on three hyperspectral datasets demonstrate the superior performance of our method, outperforming comparison methods both in quantitative metrics and visual performance.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"18 ","pages":"12116-12132"},"PeriodicalIF":4.7000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10980410","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10980410/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Remarkable strides have been made in super-resolution methods based on deep learning for hyperspectral images (HSIs), which are capable of enhancing the spatial resolution. However, these methods predominantly focus on capturing local features using convolutional neural networks (CNNs), neglecting the comprehensive utilization of global spatial-spectral information. To address this limitation, we innovatively propose a multiscale spatial-spectral CNN-transformer network for hyperspectral image super resolution, namely, MSHSR. MSHSR not only applies the local spatial-spectral characteristics but also innovatively facilitates the collaborative exploration and application of spatial details and spectral data globally. Specifically, we first design a multiscale spatial-spectral fusion module, which integrates dilated-convolution parallel branches and a hybrid spectral attention mechanism to address the strong local correlations in HSIs, effectively capturing and fusing multiscale local spatial-spectral information. Furthermore, in order to fully exploit the global contextual consistency in HSIs, we introduce a sparse spectral transformer module. This module processes the previously obtained local spatial-spectral features, thoroughly exploring the elaborate global interrelationship and long-range dependencies among different spectral bands through a coarse-to-fine strategy. Extensive experimental results on three hyperspectral datasets demonstrate the superior performance of our method, outperforming comparison methods both in quantitative metrics and visual performance.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.