Engineering cobalt nickel oxide nanowires embedded in tungsten disulfide/reduced graphene oxide hybrid composites for supercapacitor applications and overall water-splitting reactions

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Sajjad Hussain , Dhanasekaran Vikraman , Zeesham Abbas , Zulfqar Ali Sheikh , Sikandar Aftab , Iftikhar Hussain , Shoyebmohamad F. Shaikh , Hyun-Seok Kim , Deok-Kee Kim , Jongwan Jung
{"title":"Engineering cobalt nickel oxide nanowires embedded in tungsten disulfide/reduced graphene oxide hybrid composites for supercapacitor applications and overall water-splitting reactions","authors":"Sajjad Hussain ,&nbsp;Dhanasekaran Vikraman ,&nbsp;Zeesham Abbas ,&nbsp;Zulfqar Ali Sheikh ,&nbsp;Sikandar Aftab ,&nbsp;Iftikhar Hussain ,&nbsp;Shoyebmohamad F. Shaikh ,&nbsp;Hyun-Seok Kim ,&nbsp;Deok-Kee Kim ,&nbsp;Jongwan Jung","doi":"10.1016/j.jcis.2025.137965","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents the fabrication of hierarchical hollow 3D nanowires-like cobalt nickel oxide nanowires (NWs) embedded in tungsten disulfide/reduced graphene oxide hybrid (CoNiO<sub>2</sub>@WS<sub>2</sub>/rGO) composite through a facile hydrothermal process.<!--> <!-->The interaction between the 3D hollow WS<sub>2</sub>/rGO skeleton network and the well-defined CoNiO<sub>2</sub> NWs enabled the remarkable electrochemical supercapacitor performances constructed with an enriched specific capacity (515C/g at 0.5 A/g) and superior cycling solidity (97.5 %). Asymmetric device assembled engaging the CoNiO<sub>2</sub>@WS<sub>2</sub>/rGO composite displayed a 236F/g specific capacitance at 1 A/g with ∼74 Wh/kg energy density at 2.4 kW/kg power density along with a high cycling stability (95.2 %). Furthermore, CoNiO<sub>2</sub>@WS<sub>2</sub>/rGO composite possessed bundles of pores with strong interfacial connection, and this enabled a large accessible surface area on the nanowires and facilitated the release of gas bubbles, resulting in excellent oxygen evolution and hydrogen evolution kinetics with a small overpotential (<em>η</em><sub>10</sub> <!-->=<!--> <!-->195 and 33 mV, respectively). Assembled CoNiO<sub>2</sub>@WS<sub>2</sub>/rGO (+/-) electrolyzer achieved a current density of 10 mA<!--> <!-->cm<sup>−2</sup> at a minimal cell voltage<!--> <!-->of 1.43 with long-span strength. Additionally, theoretical computation studies confirmed that the exceptional catalytic efficacy of the fabricated catalyst could be attributed to the transfer of charge from WS<sub>2</sub>/rGO to CONiO<sub>2</sub> NWs.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137965"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013566","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the fabrication of hierarchical hollow 3D nanowires-like cobalt nickel oxide nanowires (NWs) embedded in tungsten disulfide/reduced graphene oxide hybrid (CoNiO2@WS2/rGO) composite through a facile hydrothermal process. The interaction between the 3D hollow WS2/rGO skeleton network and the well-defined CoNiO2 NWs enabled the remarkable electrochemical supercapacitor performances constructed with an enriched specific capacity (515C/g at 0.5 A/g) and superior cycling solidity (97.5 %). Asymmetric device assembled engaging the CoNiO2@WS2/rGO composite displayed a 236F/g specific capacitance at 1 A/g with ∼74 Wh/kg energy density at 2.4 kW/kg power density along with a high cycling stability (95.2 %). Furthermore, CoNiO2@WS2/rGO composite possessed bundles of pores with strong interfacial connection, and this enabled a large accessible surface area on the nanowires and facilitated the release of gas bubbles, resulting in excellent oxygen evolution and hydrogen evolution kinetics with a small overpotential (η10 = 195 and 33 mV, respectively). Assembled CoNiO2@WS2/rGO (+/-) electrolyzer achieved a current density of 10 mA cm−2 at a minimal cell voltage of 1.43 with long-span strength. Additionally, theoretical computation studies confirmed that the exceptional catalytic efficacy of the fabricated catalyst could be attributed to the transfer of charge from WS2/rGO to CONiO2 NWs.
工程钴镍氧化物纳米线嵌入到二硫化钨/还原氧化石墨烯混合复合材料中,用于超级电容器应用和整体水分解反应
采用简单的水热法制备了嵌入二硫化钨/还原氧化石墨烯(CoNiO2@WS2/rGO)复合材料中的层叠中空三维纳米线状钴镍氧化物纳米线(NWs)。三维空心WS2/rGO骨架网络与明确定义的CoNiO2 NWs之间的相互作用使其具有显著的电化学超级电容器性能,具有丰富的比容量(515C/g, 0.5 A/g)和优越的循环固体度(97.5%)。采用CoNiO2@WS2/rGO复合材料组装的非对称器件在1 a /g时具有236F/g的比电容,在2.4 kW/kg功率密度下具有约74 Wh/kg的能量密度,并且具有高循环稳定性(95.2%)。此外,CoNiO2@WS2/rGO复合材料具有强界面连接的成束孔隙,这使得纳米线上有很大的可达表面积,有利于气泡的释放,从而产生优异的析氧和析氢动力学,过电位小(η10 = 195和33 mV)。组装的CoNiO2@WS2/rGO(+/-)电解槽在最小电池电压1.43下实现了10 mA cm - 2的电流密度,具有长跨度强度。此外,理论计算研究证实,所制备的催化剂的特殊催化效能可能归因于电荷从WS2/rGO转移到CONiO2 NWs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信