Multifunctional heterostructured CoS2@Co3O4 nanosheets synergistically enhance polysulfide adsorption and conversion in lithium-sulfur batteries

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL
Zhidong Ye, Linfeng Gan, Yaxiong He, Qi Jiang
{"title":"Multifunctional heterostructured CoS2@Co3O4 nanosheets synergistically enhance polysulfide adsorption and conversion in lithium-sulfur batteries","authors":"Zhidong Ye,&nbsp;Linfeng Gan,&nbsp;Yaxiong He,&nbsp;Qi Jiang","doi":"10.1016/j.jcis.2025.137943","DOIUrl":null,"url":null,"abstract":"<div><div>The practical application of lithium-sulfur (Li-S) batteries faces numerous challenges, primarily due to the shuttle effect of soluble lithium polysulfides (LiPSs) and the sluggish electrochemical reaction kinetics during their conversion to Li<sub>2</sub>S, resulting in poor cycling performance. To address these issues, this study employed a vapor deposition technique to in situ construct a CoS<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> heterostructure with superior interfacial properties on a Co<sub>3</sub>O<sub>4</sub> substrate, followed by crosslinking and optimization with reduced graphene oxide (rGO). Density functional theory (DFT) calculations reveal for the first time that the incorporation of S effectively modulates the d-band center of Co, which not only enhances the chemical adsorption capability of the heterointerface toward lithium polysulfides but also optimizes the catalytic pathway for sulfur species conversion. Comprehensive experimental results and theoretical calculations confirm that the CoS<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> heterostructure exhibits multiple advantages, including strong adsorption capability, high catalytic activity, rapid Li<sup>+</sup> transport efficiency, and excellent electrical conductivity. The CoS<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> heterostructure not only significantly suppresses the LiPSs shuttle effect but also greatly accelerates the electrochemical reaction kinetics of LiPSs and Li<sub>2</sub>S. Compared to materials composed solely of CoS<sub>2</sub> or Co<sub>3</sub>O<sub>4</sub>, the CoS<sub>2</sub>@Co<sub>3</sub>O<sub>4</sub> heterostructure demonstrates synergistically enhanced electrochemical performance in Li-S batteries. At a current density of 2C, a representative Li-S battery achieves nearly 100 % Coulombic efficiency, with a reversible specific capacity of 827 mAh g<sup>−1</sup> retained after 1000 cycles, corresponding to a capacity decay rate of only 0.007 % per cycle. Even under high sulfur loading conditions (5.1 mg cm<sup>−2</sup>), the battery maintains stable cycling performance. This work provides novel insights and directions for designing multifunctional heterostructures with synergistic effects for applications in lithium-ion batteries and catalytic fields.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":"697 ","pages":"Article 137943"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979725013347","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of lithium-sulfur (Li-S) batteries faces numerous challenges, primarily due to the shuttle effect of soluble lithium polysulfides (LiPSs) and the sluggish electrochemical reaction kinetics during their conversion to Li2S, resulting in poor cycling performance. To address these issues, this study employed a vapor deposition technique to in situ construct a CoS2@Co3O4 heterostructure with superior interfacial properties on a Co3O4 substrate, followed by crosslinking and optimization with reduced graphene oxide (rGO). Density functional theory (DFT) calculations reveal for the first time that the incorporation of S effectively modulates the d-band center of Co, which not only enhances the chemical adsorption capability of the heterointerface toward lithium polysulfides but also optimizes the catalytic pathway for sulfur species conversion. Comprehensive experimental results and theoretical calculations confirm that the CoS2@Co3O4 heterostructure exhibits multiple advantages, including strong adsorption capability, high catalytic activity, rapid Li+ transport efficiency, and excellent electrical conductivity. The CoS2@Co3O4 heterostructure not only significantly suppresses the LiPSs shuttle effect but also greatly accelerates the electrochemical reaction kinetics of LiPSs and Li2S. Compared to materials composed solely of CoS2 or Co3O4, the CoS2@Co3O4 heterostructure demonstrates synergistically enhanced electrochemical performance in Li-S batteries. At a current density of 2C, a representative Li-S battery achieves nearly 100 % Coulombic efficiency, with a reversible specific capacity of 827 mAh g−1 retained after 1000 cycles, corresponding to a capacity decay rate of only 0.007 % per cycle. Even under high sulfur loading conditions (5.1 mg cm−2), the battery maintains stable cycling performance. This work provides novel insights and directions for designing multifunctional heterostructures with synergistic effects for applications in lithium-ion batteries and catalytic fields.
多功能异质结构CoS2@Co3O4纳米片协同增强锂硫电池中多硫化物的吸附和转化
锂硫(li -硫)电池的实际应用面临诸多挑战,主要是由于可溶性多硫化物锂(LiPSs)的穿梭效应和转化为Li2S的电化学反应动力学缓慢,导致循环性能不佳。为了解决这些问题,本研究采用气相沉积技术在Co3O4衬底上原位构建具有优异界面性能的CoS2@Co3O4异质结构,然后用还原氧化石墨烯(rGO)进行交联和优化。密度泛函理论(DFT)计算首次揭示了S的加入有效地调节了Co的d带中心,这不仅增强了异质界面对锂多硫化物的化学吸附能力,而且优化了硫种转化的催化途径。综合实验结果和理论计算证实,CoS2@Co3O4异质结构具有吸附能力强、催化活性高、Li+传输效率快、导电性优异等多重优势。CoS2@Co3O4异质结构不仅显著抑制了LiPSs的穿梭效应,而且大大加快了LiPSs与Li2S的电化学反应动力学。与仅由co2或Co3O4组成的材料相比,CoS2@Co3O4异质结构在Li-S电池中表现出协同增强的电化学性能。在2C电流密度下,典型锂硫电池的库仑效率接近100%,1000次循环后的可逆比容量为827 mAh g−1,对应于每循环的容量衰减率仅为0.007%。即使在高硫负载条件下(5.1 mg cm−2),电池也能保持稳定的循环性能。这项工作为设计具有协同效应的多功能异质结构在锂离子电池和催化领域的应用提供了新的见解和方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信