{"title":"An annotated image dataset of urban insects for the development of computer vision and deep learning models with detection tasks","authors":"Min Hui Lim , Hiang Hao Chan , Song-Quan Ong","doi":"10.1016/j.dib.2025.111673","DOIUrl":null,"url":null,"abstract":"<div><div>A large image dataset with the aim of developing an insect recognition algorithm like YOLO. The dataset contains more than 25,000 annotations on the taxonomy of urban insects according to their order and the localization of the insect (as a bounding box) on a scanned image. This annotated image dataset of flying insects was collected using UV light traps placed in food warehouses, manufacturers and grocery stores in urban environments. The traps, equipped with UVA lamps (365 nm), captured a variety of insect species on sticky cards over 7–10 days. The sticky traps with all captured insects were used to create high-resolution scanned images (1200 dpi, 48-bit colour), with the resolution preserving fine morphological details of the insect, such as the antenna. To annotate the dataset for computer vision and deep learning models with detection tasks, annotation was performed using CVAT, with bounding boxes labelled by entomology experts at the order level. The dataset was intended to serve as a dataset for computer scientists or entomologists to compare the performance of deep learning models that can be used to build an automatic detection system for urban insect diversity or pest control studies.</div></div>","PeriodicalId":10973,"journal":{"name":"Data in Brief","volume":"60 ","pages":"Article 111673"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data in Brief","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352340925004032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A large image dataset with the aim of developing an insect recognition algorithm like YOLO. The dataset contains more than 25,000 annotations on the taxonomy of urban insects according to their order and the localization of the insect (as a bounding box) on a scanned image. This annotated image dataset of flying insects was collected using UV light traps placed in food warehouses, manufacturers and grocery stores in urban environments. The traps, equipped with UVA lamps (365 nm), captured a variety of insect species on sticky cards over 7–10 days. The sticky traps with all captured insects were used to create high-resolution scanned images (1200 dpi, 48-bit colour), with the resolution preserving fine morphological details of the insect, such as the antenna. To annotate the dataset for computer vision and deep learning models with detection tasks, annotation was performed using CVAT, with bounding boxes labelled by entomology experts at the order level. The dataset was intended to serve as a dataset for computer scientists or entomologists to compare the performance of deep learning models that can be used to build an automatic detection system for urban insect diversity or pest control studies.
期刊介绍:
Data in Brief provides a way for researchers to easily share and reuse each other''s datasets by publishing data articles that: -Thoroughly describe your data, facilitating reproducibility. -Make your data, which is often buried in supplementary material, easier to find. -Increase traffic towards associated research articles and data, leading to more citations. -Open up doors for new collaborations. Because you never know what data will be useful to someone else, Data in Brief welcomes submissions that describe data from all research areas.