A general two-group constants estimator for 17x17 PWR assembly configurations using artificial neural networks

Gökhan Pediz , M. Alim Kırışık
{"title":"A general two-group constants estimator for 17x17 PWR assembly configurations using artificial neural networks","authors":"Gökhan Pediz ,&nbsp;M. Alim Kırışık","doi":"10.1016/j.jandt.2025.04.014","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a preliminary general two-group constants predictor using artificial neural networks (ANNs) for pressurized water reactor (PWR) based assembly designs is established. Users can input arbitrary assembly specifications to the trained ANN, enabling the instant generation of group constants while avoiding the high computational cost of neutron transport calculations. The input parameters encompass diverse geometric configurations, material compositions and temperatures, and burnup states. The TensorFlow platform embedded in Keras API has been used to train ANNs. The number of layers and hyperparameters used in the ANN has been determined using the KerasTuner optimization framework employing the Bayesian optimization algorithm. Serpent code has been used to generate two-group constants for random assembly configurations to obtain training and test data. The prediction measures show that ANNs can consistently estimate two-group constants for the test data assemblies. The accuracy of the trained ANN is evaluated by multiplication factor calculations for selected benchmarks. Comparisons with the reference results show that ANNs can reflect the group constants for various states of a fuel assembly with satisfactory agreement.</div></div>","PeriodicalId":100689,"journal":{"name":"International Journal of Advanced Nuclear Reactor Design and Technology","volume":"7 2","pages":"Pages 90-99"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Nuclear Reactor Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468605025000468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a preliminary general two-group constants predictor using artificial neural networks (ANNs) for pressurized water reactor (PWR) based assembly designs is established. Users can input arbitrary assembly specifications to the trained ANN, enabling the instant generation of group constants while avoiding the high computational cost of neutron transport calculations. The input parameters encompass diverse geometric configurations, material compositions and temperatures, and burnup states. The TensorFlow platform embedded in Keras API has been used to train ANNs. The number of layers and hyperparameters used in the ANN has been determined using the KerasTuner optimization framework employing the Bayesian optimization algorithm. Serpent code has been used to generate two-group constants for random assembly configurations to obtain training and test data. The prediction measures show that ANNs can consistently estimate two-group constants for the test data assemblies. The accuracy of the trained ANN is evaluated by multiplication factor calculations for selected benchmarks. Comparisons with the reference results show that ANNs can reflect the group constants for various states of a fuel assembly with satisfactory agreement.
基于人工神经网络的17x17压水堆组件组态双组常数估计
本文利用人工神经网络(ann)建立了一个用于压水堆(PWR)组件设计的通用双组常数预估器。用户可以输入任意装配规格训练的人工神经网络,使组常数的即时生成,同时避免了中子输运计算的高计算成本。输入参数包括不同的几何结构、材料成分、温度和燃耗状态。嵌入在Keras API中的TensorFlow平台已被用于训练人工神经网络。人工神经网络中使用的层数和超参数已使用采用贝叶斯优化算法的KerasTuner优化框架确定。Serpent代码用于生成随机装配配置的两组常数,以获得训练和测试数据。预测结果表明,人工神经网络可以一致地估计测试数据集的两组常数。通过对选定基准的乘法系数计算来评估训练后的人工神经网络的准确性。与参考结果的比较表明,人工神经网络能较好地反映燃料组件各种状态下的群常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信