Yuqing Deng, Pujin Cheng, Ruiwen Xu, Lirong Ling, Hongliang Xue, Shiyou Zhou, Yansong Huang, Junyan Lyu, Zhonghua Wang, Kenneth K. Y. Wong, Yimin Zhang, Kang Yu, Tingting Zhang, Xiaoqing Hu, Xiaoyi Li, Xiaoying Tang, Yan Lou, Jin Yuan
{"title":"Advanced and interpretable corneal staining assessment through fine grained knowledge distillation","authors":"Yuqing Deng, Pujin Cheng, Ruiwen Xu, Lirong Ling, Hongliang Xue, Shiyou Zhou, Yansong Huang, Junyan Lyu, Zhonghua Wang, Kenneth K. Y. Wong, Yimin Zhang, Kang Yu, Tingting Zhang, Xiaoqing Hu, Xiaoyi Li, Xiaoying Tang, Yan Lou, Jin Yuan","doi":"10.1038/s41746-025-01706-y","DOIUrl":null,"url":null,"abstract":"<p>The assessment of corneal fluorescein staining is essential, yet current AI models for Corneal Staining Score (CSS) assessments inadequately identify punctate lesions due to annotation challenges and noise, risk misrepresenting treatment responses through “plateau” effects, and highlight the necessity for real-world evaluations to enhance disease severity assessments. To address these limitations, we developed the Fine-grained Knowledge Distillation Corneal Staining Score (FKD-CSS) model. FKD-CSS integrates fine-grained features into CSS grading, providing continuous and nuanced scores with interpretability. Trained on corneal staining images collected from dry eye (DE) patients across 14 hospitals, FKD-CSS achieved robust accuracy, with a Pearson’s r of 0.898 and an AUC of 0.881 in internal validation, matching senior ophthalmologists’ performance. External tests on 2376 images from 23 hospitals across China further validated its efficacy (r: 0.844–0.899, AUC: 0.804-0.883). Additionally, FKD-CSS demonstrated generalizability in multi-ocular-surface-disease testing, underscoring its potential in handling different staining patterns.</p>","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":"79 1","pages":""},"PeriodicalIF":12.4000,"publicationDate":"2025-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41746-025-01706-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of corneal fluorescein staining is essential, yet current AI models for Corneal Staining Score (CSS) assessments inadequately identify punctate lesions due to annotation challenges and noise, risk misrepresenting treatment responses through “plateau” effects, and highlight the necessity for real-world evaluations to enhance disease severity assessments. To address these limitations, we developed the Fine-grained Knowledge Distillation Corneal Staining Score (FKD-CSS) model. FKD-CSS integrates fine-grained features into CSS grading, providing continuous and nuanced scores with interpretability. Trained on corneal staining images collected from dry eye (DE) patients across 14 hospitals, FKD-CSS achieved robust accuracy, with a Pearson’s r of 0.898 and an AUC of 0.881 in internal validation, matching senior ophthalmologists’ performance. External tests on 2376 images from 23 hospitals across China further validated its efficacy (r: 0.844–0.899, AUC: 0.804-0.883). Additionally, FKD-CSS demonstrated generalizability in multi-ocular-surface-disease testing, underscoring its potential in handling different staining patterns.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.