{"title":"Therapeutic Efficacy of Mesenchymal Stem Cells in Modulating Oxidative Stress in Puromycin-Induced Nephropathy.","authors":"Yusuke Iizuka, Masanori Sasaki, Kojiro Terada, Takuro Sakai, Yoshinobu Nagaoka, Shinobu Fukumura, Jeffery D Kocsis, Takeshi Tsugawa, Osamu Honmou","doi":"10.3390/pathophysiology32020019","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Podocytes are essential for kidney function, and their dysfunction can result in nephrotic syndrome, such as minimal change disease (MCD). Oxidative stress contributes to podocyte damage. We investigated the therapeutic potential of intravenously infused mesenchymal stem cells (MSCs) in a puromycin aminonucleoside (PAN)-induced rodent MCD model, focusing on oxidative stress modulation. <b><i>Methods:</i></b> Sprague-Dawley rats were divided into three groups: intact, PAN-Vehicle, and PAN-MSC. MCD was induced through subcutaneous PAN injection. MSCs were infused intravenously in the PAN-MSC group on day 7. Urinary albumin, serum albumin, and creatinine levels were assessed. Histological analysis of the renal cortex was performed. Podocyte protein (NPHS1, NPHS2, and PODXL) and antioxidant enzyme (SOD1, SOD2, and GPX1) levels were measured using quantitative real-time reverse-transcription PCR (qRT-PCR). <b><i>Results:</i></b> MSC infusion significantly reduced proteinuria and restored podocyte structure in the PAN-MSC group. Electron microscopy revealed that infused MSCs could inhibit the fusion of the foot process induced by PAN injection. qRT-PCR showed that intravenous infusion of MSCs rescued the inhibition of GPX1 expression. GFP-labeled MSCs accumulated at the podocyte injury sites. <b><i>Conclusion:</i></b> Systemic MSC infusion mitigates PAN-induced MCD by reducing proteinuria, preserving podocyte structure, and modulating oxidative stress via the GPX1 pathway, offering a potential therapeutic approach for nephrotic syndrome.</p>","PeriodicalId":520741,"journal":{"name":"Pathophysiology : the official journal of the International Society for Pathophysiology","volume":"32 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12101160/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pathophysiology : the official journal of the International Society for Pathophysiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/pathophysiology32020019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Podocytes are essential for kidney function, and their dysfunction can result in nephrotic syndrome, such as minimal change disease (MCD). Oxidative stress contributes to podocyte damage. We investigated the therapeutic potential of intravenously infused mesenchymal stem cells (MSCs) in a puromycin aminonucleoside (PAN)-induced rodent MCD model, focusing on oxidative stress modulation. Methods: Sprague-Dawley rats were divided into three groups: intact, PAN-Vehicle, and PAN-MSC. MCD was induced through subcutaneous PAN injection. MSCs were infused intravenously in the PAN-MSC group on day 7. Urinary albumin, serum albumin, and creatinine levels were assessed. Histological analysis of the renal cortex was performed. Podocyte protein (NPHS1, NPHS2, and PODXL) and antioxidant enzyme (SOD1, SOD2, and GPX1) levels were measured using quantitative real-time reverse-transcription PCR (qRT-PCR). Results: MSC infusion significantly reduced proteinuria and restored podocyte structure in the PAN-MSC group. Electron microscopy revealed that infused MSCs could inhibit the fusion of the foot process induced by PAN injection. qRT-PCR showed that intravenous infusion of MSCs rescued the inhibition of GPX1 expression. GFP-labeled MSCs accumulated at the podocyte injury sites. Conclusion: Systemic MSC infusion mitigates PAN-induced MCD by reducing proteinuria, preserving podocyte structure, and modulating oxidative stress via the GPX1 pathway, offering a potential therapeutic approach for nephrotic syndrome.