John P Murad, Lea Christian, Reginaldo Rosa, Yuwei Ren, Eric Hee Jun Lee, Lupita S Lopez, Anthony K Park, Jason Yang, Candi Trac, Lauren N Adkins, Wen-Chung Chang, Catalina Martinez, Carl H June, Stephen J Forman, Jun Ishihara, John K Lee, Lawrence A Stern, Saul J Priceman
{"title":"Solid tumor CAR T cells engineered with fusion proteins targeting PDL1 for localized IL-12 delivery.","authors":"John P Murad, Lea Christian, Reginaldo Rosa, Yuwei Ren, Eric Hee Jun Lee, Lupita S Lopez, Anthony K Park, Jason Yang, Candi Trac, Lauren N Adkins, Wen-Chung Chang, Catalina Martinez, Carl H June, Stephen J Forman, Jun Ishihara, John K Lee, Lawrence A Stern, Saul J Priceman","doi":"10.1101/2025.04.04.647304","DOIUrl":null,"url":null,"abstract":"<p><p>CAR T cell efficacy in solid tumors is limited due in part to the immunosuppressive TME. To improve anti-tumor responses, we hypothesized that enabling CAR T cells to secrete bifunctional fusion proteins consisting of a cytokine modifier (e.g., TGFβtrap, IL15, or IL12) combined with an immune checkpoint inhibitor (e.g., αPDL1) will provide tumor localized immunomodulation to improve CAR T cell functionality. To that end, we engineered CAR T cells to secrete TGFβtrap, IL15, or IL12 molecules fused to αPDL1 scFv, and assessed in vitro functionality and in vivo safety and efficacy in prostate and ovarian cancer models. CAR T cells engineered with αPDL1-IL12 were superior in safety and efficacy compared to CAR T cells alone and to those engineered with αPDL1 fused with TGFβtrap or IL15. Further, αPDL1-IL12 engineered CAR T cells improved T cell trafficking and tumor infiltration, localized IFNγ production, TME modulation, and anti-tumor responses, with reduced systemic inflammation-associated toxicities. We believe our αPDL1-IL12 engineering strategy presents an opportunity to improve CAR T cell clinical efficacy and safety across multiple solid tumor types.</p>","PeriodicalId":519960,"journal":{"name":"bioRxiv : the preprint server for biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12097497/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv : the preprint server for biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2025.04.04.647304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
CAR T cell efficacy in solid tumors is limited due in part to the immunosuppressive TME. To improve anti-tumor responses, we hypothesized that enabling CAR T cells to secrete bifunctional fusion proteins consisting of a cytokine modifier (e.g., TGFβtrap, IL15, or IL12) combined with an immune checkpoint inhibitor (e.g., αPDL1) will provide tumor localized immunomodulation to improve CAR T cell functionality. To that end, we engineered CAR T cells to secrete TGFβtrap, IL15, or IL12 molecules fused to αPDL1 scFv, and assessed in vitro functionality and in vivo safety and efficacy in prostate and ovarian cancer models. CAR T cells engineered with αPDL1-IL12 were superior in safety and efficacy compared to CAR T cells alone and to those engineered with αPDL1 fused with TGFβtrap or IL15. Further, αPDL1-IL12 engineered CAR T cells improved T cell trafficking and tumor infiltration, localized IFNγ production, TME modulation, and anti-tumor responses, with reduced systemic inflammation-associated toxicities. We believe our αPDL1-IL12 engineering strategy presents an opportunity to improve CAR T cell clinical efficacy and safety across multiple solid tumor types.