Attention Rings for Shape Analysis and Application to MRI Quality Control.

Florian Davaux, Lucas Valladon, Lucie Dole, Jean Christophe Fillion, Beatriz Paniagua, Martin Styner, Juan Carlos Prieto
{"title":"Attention Rings for Shape Analysis and Application to MRI Quality Control.","authors":"Florian Davaux, Lucas Valladon, Lucie Dole, Jean Christophe Fillion, Beatriz Paniagua, Martin Styner, Juan Carlos Prieto","doi":"10.1117/12.3047233","DOIUrl":null,"url":null,"abstract":"<p><p>The Adolescent Brain Cognitive Development (ABCD) Study collects extensive neuroimaging data, including over 20,000 MRI sessions, to understand brain development in children. Ensuring high-quality MRI data is essential for accurate analysis, but manual Quality Control (QC) is impractical for large datasets due to time and resource constraints. We propose an automated QC method using an ensemble model that leverages metrics from FSQC and a novel deep learning model for brain shape analysis that uses cortical thickness, curvature, sulcal depth, and surface area as input features. The ensemble model achieved an accuracy of 76%, while our method achieved an accuracy of 72.62%, with balanced precision, recall, and F1 scores for both classes. This automated method promises to improve QC processes and accelerate the analysis of ABCD data.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"13410 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12096335/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3047233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Adolescent Brain Cognitive Development (ABCD) Study collects extensive neuroimaging data, including over 20,000 MRI sessions, to understand brain development in children. Ensuring high-quality MRI data is essential for accurate analysis, but manual Quality Control (QC) is impractical for large datasets due to time and resource constraints. We propose an automated QC method using an ensemble model that leverages metrics from FSQC and a novel deep learning model for brain shape analysis that uses cortical thickness, curvature, sulcal depth, and surface area as input features. The ensemble model achieved an accuracy of 76%, while our method achieved an accuracy of 72.62%, with balanced precision, recall, and F1 scores for both classes. This automated method promises to improve QC processes and accelerate the analysis of ABCD data.

形状分析的注意环及其在MRI质量控制中的应用。
青少年大脑认知发展(ABCD)研究收集了大量的神经成像数据,包括超过20,000次核磁共振成像,以了解儿童的大脑发育。确保高质量的MRI数据对于准确分析至关重要,但由于时间和资源的限制,人工质量控制(QC)对于大型数据集是不切实际的。我们提出了一种自动化的QC方法,使用集成模型,利用FSQC的指标和一种新的深度学习模型,用于大脑形状分析,使用皮质厚度,曲率,沟深度和表面积作为输入特征。集成模型达到了76%的准确率,而我们的方法达到了72.62%的准确率,两个类别的精度、召回率和F1分数都是平衡的。这种自动化方法有望改善质量控制过程,加速ABCD数据的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信