iSEEtree: interactive explorer for hierarchical data.

IF 2.4 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-05-06 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf107
Giulio Benedetti, Ely Seraidarian, Theotime Pralas, Akewak Jeba, Tuomas Borman, Leo Lahti
{"title":"iSEEtree: interactive explorer for hierarchical data.","authors":"Giulio Benedetti, Ely Seraidarian, Theotime Pralas, Akewak Jeba, Tuomas Borman, Leo Lahti","doi":"10.1093/bioadv/vbaf107","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Hierarchical data structures are prevalent across several research fields, as they represent an organized and efficient approach to study complex interconnected systems. Their significance is particularly evident in microbiome analysis, where microbial communities are classified at various taxonomic levels using phylogenetic trees. In light of this trend, the R/Bioconductor community has established a reproducible analytical framework for hierarchical data, which relies on the generic and optimized TreeSummarizedExperiment data container. However, this framework requires basic programming skills.</p><p><strong>Results: </strong>To reduce the entry requirements, we developed iSEEtree, an R package, which provides a visual interface for the analysis and exploration of TreeSummarizedExperiment objects, thereby expanding the interactive graphics capabilities of related work to hierarchical structures. This way, users can interactively explore several aspects of their data without the need for an extensive knowledge of R programming. We describe how iSEEtree enables the exploration of hierarchical multi-table data and demonstrate its functionality with applications to microbiome analysis.</p><p><strong>Availability and implementation: </strong>iSEEtree was implemented in the R programming language and is available on Bioconductor at https://bioconductor.org/packages/iSEEtree under an Artistic 2.0 license.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf107"},"PeriodicalIF":2.4000,"publicationDate":"2025-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12095132/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Hierarchical data structures are prevalent across several research fields, as they represent an organized and efficient approach to study complex interconnected systems. Their significance is particularly evident in microbiome analysis, where microbial communities are classified at various taxonomic levels using phylogenetic trees. In light of this trend, the R/Bioconductor community has established a reproducible analytical framework for hierarchical data, which relies on the generic and optimized TreeSummarizedExperiment data container. However, this framework requires basic programming skills.

Results: To reduce the entry requirements, we developed iSEEtree, an R package, which provides a visual interface for the analysis and exploration of TreeSummarizedExperiment objects, thereby expanding the interactive graphics capabilities of related work to hierarchical structures. This way, users can interactively explore several aspects of their data without the need for an extensive knowledge of R programming. We describe how iSEEtree enables the exploration of hierarchical multi-table data and demonstrate its functionality with applications to microbiome analysis.

Availability and implementation: iSEEtree was implemented in the R programming language and is available on Bioconductor at https://bioconductor.org/packages/iSEEtree under an Artistic 2.0 license.

用于分层数据的交互式资源管理器。
动机:分层数据结构在许多研究领域都很流行,因为它们代表了一种有组织和有效的方法来研究复杂的相互关联的系统。它们的意义在微生物组分析中尤其明显,微生物群落在不同的分类水平上使用系统发育树进行分类。鉴于这一趋势,R/Bioconductor社区建立了一个可重复的分层数据分析框架,该框架依赖于通用和优化的treesummarizedexexperiment数据容器。然而,这个框架需要基本的编程技能。结果:为了降低入门要求,我们开发了一个R包iSEEtree,它为分析和探索TreeSummarizedExperiment对象提供了一个可视化界面,从而将相关工作的交互图形功能扩展到层次结构。通过这种方式,用户可以交互式地探索数据的几个方面,而不需要广泛的R编程知识。我们描述了isetree如何实现分层多表数据的探索,并演示了其在微生物组分析应用中的功能。可用性和实现:iSEEtree是用R编程语言实现的,并且可以在Bioconductor的https://bioconductor.org/packages/iSEEtree上获得,并获得了art 2.0许可。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信